分析 (1)由(Sn-1)2=anSn(n∈N*),分別取n=1,2,3即可得出.
(2)由(1)可得:n≥2時,(Sn-1)2=(Sn-Sn-1)Sn(n∈N*).化為:Sn=$\frac{1}{2-{S}_{n-1}}$.猜想Sn=$\frac{n}{n+1}$.代入驗證即可得出.
(3)bn=(-1)n-1(n+1)2anan+1(n∈N*)=(-1)n-1$\frac{1}{n(n+2)}$=(-1)n-1$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$,對n分類討論,利用“裂項求和”方法即可得出.
解答 解:(1)∵(Sn-1)2=anSn(n∈N*),
∴n≥2時,(Sn-1)2=(Sn-Sn-1)Sn(n∈N*).
∴n=1時,$({a}_{1}-1)^{2}={a}_{1}^{2}$,解得a1=$\frac{1}{2}$=S1.
n=2時,$({S}_{2}-1)^{2}=({S}_{2}-\frac{1}{2}){S}_{2}$,解得S2=$\frac{2}{3}$.
同理可得:S3=$\frac{3}{4}$.
(2)由(1)可得:n≥2時,(Sn-1)2=(Sn-Sn-1)Sn(n∈N*).
化為:Sn=$\frac{1}{2-{S}_{n-1}}$.(*)
猜想Sn=$\frac{n}{n+1}$.
n≥2時,代入(*),左邊=$\frac{n}{n+1}$;右邊=$\frac{1}{2-\frac{n-1}{n}}$=$\frac{n}{n+1}$,
∴左邊=右邊,猜想成立,n=1時也成立.
∴n≥2時,an=Sn-Sn-1=$\frac{n}{n+1}$-$\frac{n-1}{n}$=$\frac{1}{n(n+1)}$,n=1時也成立.
∴Sn=$\frac{n}{n+1}$,an=$\frac{1}{n(n+1)}$.
(3)bn=(-1)n-1(n+1)2anan+1(n∈N*)=(-1)n-1$\frac{1}{n(n+2)}$=(-1)n-1$\frac{1}{2}(\frac{1}{n}-\frac{1}{n+2})$,
∴n=2k(k∈N*)時,數(shù)列{bn}的前n項和為
Tn=$\frac{1}{2}[(1-\frac{1}{3})$-$(\frac{1}{2}-\frac{1}{4})$+$(\frac{1}{3}-\frac{1}{5})$+…+$(\frac{1}{n-1}-\frac{1}{n+1})$-$(\frac{1}{n}-\frac{1}{n+2})]$
=$\frac{1}{2}$$(1-\frac{1}{2}-\frac{1}{n+1}+\frac{1}{n+2})$=$\frac{1}{4}$-$\frac{1}{2(n+1)(n+2)}$.
n=2k-1(k∈N*)時,數(shù)列{bn}的前n項和為
Tn=$\frac{1}{2}[(1-\frac{1}{3})$-$(\frac{1}{2}-\frac{1}{4})$+$(\frac{1}{3}-\frac{1}{5})$+…-$(\frac{1}{n-1}-\frac{1}{n+1})$+$(\frac{1}{n}-\frac{1}{n+2})]$
=$\frac{1}{2}(1-\frac{1}{2}+\frac{1}{n+1}-\frac{1}{n+2})$=$\frac{1}{4}$+$\frac{1}{2(n+1)(n+2)}$.
∴Tn=$\frac{1}{4}+(-1)^{n-1}$×$\frac{1}{2(n+1)(n+2)}$.
點評 本題考查了“裂項求和法”、數(shù)列遞推關(guān)系,考查了分類討論方法、推理能力與計算能力,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{\sqrt{15}}{3}$ | B. | $\frac{5}{3}$ | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com