已知中心在原點(diǎn)的雙曲線C的一個(gè)焦點(diǎn)是F1(一3,0),一條漸近線的方程是
(1)求雙曲線C的方程;
(2)若以k(k≠0)為斜率的直線與雙曲線C相交于兩個(gè)不同的點(diǎn)M, N,且線段MN的
垂直平分線與兩坐標(biāo)軸圍成的三角形的面積為,求k的取值范圍。
(1) ;(2)
解析試題分析:(1)因?yàn)橹行脑谠c(diǎn)的雙曲線C的一個(gè)焦點(diǎn)是F1(一3,0),一條漸近線的方程是,兩個(gè)條件即可求出雙曲線的方程.
(2)依題意可得通過假設(shè)直線的方程,聯(lián)立雙曲線方程消去y,即可得到一個(gè)關(guān)于x的二次方程,運(yùn)用韋達(dá)定理以及判別式要大于零,即可寫出線段MN的中垂線的直線方程,從而求出直線與兩坐標(biāo)軸的交點(diǎn),即可表示出所求的三角形的面積,從而得到一個(gè)等式結(jié)合判別式的關(guān)系式,即可得到結(jié)論.
試題解析:(1)設(shè)雙曲線的方程為,
由題設(shè)得 解得,所以雙曲線的方程為;
(2)設(shè)直線的方程為,點(diǎn),的坐標(biāo)滿足方程組,將①式代入②式,得,
整理得,此方程有兩個(gè)不等實(shí)根,于是,
且,
整理得.③ 由根與系數(shù)的關(guān)系可知線段的中點(diǎn)坐標(biāo)滿足:
,,從而線段的垂直平分線的方程為,此直線與軸,軸的交點(diǎn)坐標(biāo)分別為,,
由題設(shè)可得,整理得,,
將上式代入③式得,整理得,,解得或, 所以的取值范圍是.
考點(diǎn):1.待定系數(shù)的應(yīng)用.2.直線與圓錐曲線的位置關(guān)系.3.三角形的面積的表示方法.4.韋達(dá)定理.5.代數(shù)的運(yùn)算能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)橢圓+=1(a>b>0)的左,右焦點(diǎn)分別為F1,F2,點(diǎn)P(a,b)滿足|PF2|=|F1F2|.
(1)求橢圓的離心率e;
(2)設(shè)直線PF2與橢圓相交于A,B兩點(diǎn).若直線PF2與圓(x+1)2+(y-)2=16相交于M,N兩點(diǎn),且|MN|=|AB|,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
設(shè)A,B分別是直線y=x和y=-x上的動(dòng)點(diǎn),且|AB|=,設(shè)O為坐標(biāo)原點(diǎn),動(dòng)點(diǎn)P滿足=+.
(1)求點(diǎn)P的軌跡方程;
(2)過點(diǎn)(,0)作兩條互相垂直的直線l1,l2,直線l1,l2與點(diǎn)P的軌跡的相交弦分別為CD,EF,設(shè)CD,EF的弦中點(diǎn)分別為M,N,求證:直線MN恒過一個(gè)定點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓C:+=1(a>b>0)的右焦點(diǎn)為F(1,0),且點(diǎn)(-1,)在橢圓C上.
(1)求橢圓C的標(biāo)準(zhǔn)方程.
(2)已知點(diǎn)Q(,0),動(dòng)直線l過點(diǎn)F,且直線l與橢圓C交于A,B兩點(diǎn),證明:·為定值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
橢圓的離心率為,且過點(diǎn)直線與橢圓M交于A、C兩點(diǎn),直線與橢圓M交于B、D兩點(diǎn),四邊形ABCD是平行四邊形
(1)求橢圓M的方程;
(2)求證:平行四邊形ABCD的對(duì)角線AC和BD相交于原點(diǎn)O;
(3)若平行四邊形ABCD為菱形,求菱形ABCD的面積的最小值
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖所示,已知拋物線方程為y2=4x,其焦點(diǎn)為F,準(zhǔn)線為l,A點(diǎn)為拋物線上異于頂點(diǎn)的一個(gè)動(dòng)點(diǎn),射線HAE垂直于準(zhǔn)線l,垂足為H,C點(diǎn)在x軸正半軸上,且四邊形AHFC是平行四邊形,線段AF和AC的延長(zhǎng)線分別交拋物線于點(diǎn)B和點(diǎn)D.
(1)證明:∠BAD=∠EAD;
(2)求△ABD面積的最小值,并寫出此時(shí)A點(diǎn)的坐標(biāo).
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
已知橢圓的離心率為,短軸一個(gè)端點(diǎn)到右焦點(diǎn)的距離為.
(1)求橢圓的方程;
(2)設(shè)不與坐標(biāo)軸平行的直線與橢圓交于兩點(diǎn),坐標(biāo)原點(diǎn)到直線的距離為,求面積的最大值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
如圖,已知橢圓的離心率是,分別是橢圓的左、右兩個(gè)頂點(diǎn),點(diǎn)是橢圓的右焦點(diǎn)。點(diǎn)是軸上位于右側(cè)的一點(diǎn),且滿足.
(1)求橢圓的方程以及點(diǎn)的坐標(biāo);
(2)過點(diǎn)作軸的垂線,再作直線與橢圓有且僅有一個(gè)公共點(diǎn),直線交直線于點(diǎn).求證:以線段為直徑的圓恒過定點(diǎn),并求出定點(diǎn)的坐標(biāo).
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com