(2013•嘉定區(qū)一模)在直角坐標(biāo)系xOy中,O為坐標(biāo)原點(diǎn),點(diǎn)A(2,1),B(5,y),若
OA
AB
,則y=
-5
-5
分析:由O為坐標(biāo)原點(diǎn),點(diǎn)A(2,1),B(5,y),先求出
OA
=(2,1)
,
AB
=(3,y-1)
,再由
OA
AB
,能求出y.
解答:解:∵O為坐標(biāo)原點(diǎn),點(diǎn)A(2,1),B(5,y),
OA
=(2,1)
,
AB
=(3,y-1)
,
OA
AB
,
OA
OB
=6+y-1=0
,
解得y=-5.
故答案為:-5.
點(diǎn)評(píng):本題考查數(shù)量積判斷兩個(gè)向量的垂直關(guān)系的應(yīng)用,是基礎(chǔ)題.解題時(shí)要認(rèn)真審題,仔細(xì)解答.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•嘉定區(qū)一模)書(shū)架上有3本不同的數(shù)學(xué)書(shū),2本不同的語(yǔ)文書(shū),2本不同的英語(yǔ)書(shū),將它們?nèi)我獾嘏懦梢慌,則左邊3本都是數(shù)學(xué)書(shū)的概率為
1
35
1
35
(結(jié)果用分?jǐn)?shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•嘉定區(qū)一模)若雙曲線x2-
y2
k
=1
的焦點(diǎn)到漸近線的距離為2
2
,則實(shí)數(shù)k的值是
8
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•嘉定區(qū)一模)如圖所示的算法框圖,若輸出S的值是90,那么在判斷框(1)處應(yīng)填寫(xiě)的條件是
k≤8
k≤8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•嘉定區(qū)一模)如圖,在平面直角坐標(biāo)系xOy中,橢圓
x2
a2
+
y2
b2
=1(a>b>0)被圍于由4條直線x=±a,y=±b所圍成的矩形ABCD內(nèi),任取橢圓上一點(diǎn)P,若
OP
=m•
OA
+n•
OB
(m、n∈R),則m、n滿足的一個(gè)等式是
m2+n2=
1
2
m2+n2=
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

(2013•嘉定區(qū)一模)設(shè)等差數(shù)列{an}的前n項(xiàng)和為Sn,且a5+a13=34,S3=9.?dāng)?shù)列{bn}的前n項(xiàng)和為Tn,滿足Tn=1-bn
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)寫(xiě)出一個(gè)正整數(shù)m,使得
1
am+9
是數(shù)列{bn}的項(xiàng);
(3)設(shè)數(shù)列{cn}的通項(xiàng)公式為cn=
an
an+t
,問(wèn):是否存在正整數(shù)t和k(k≥3),使得c1,c2,ck成等差數(shù)列?若存在,請(qǐng)求出所有符合條件的有序整數(shù)對(duì)(t,k);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

同步練習(xí)冊(cè)答案