17.不等式x2+x-2>0的解集為{x|x<-2或x>1}.

分析 不等式x2+x-2>0化為:(x+2)(x-1)>0,解出即可得出.

解答 解:不等式x2+x-2>0化為:(x+2)(x-1)>0,解得x>1或x<-2.
∴不等式x2+x-2>0的解集為{x|x<-2或x>1}.
故答案為:{x|x<-2或x>1}.

點(diǎn)評(píng) 本題考查了一元二次不等式的解法,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知集合M={x|x2-3x≤10},N={x|a-1≤x≤2a+1}.
(1)若a=2,求(∁RM)∪N;
(2)若M∪N=M,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=$\sqrt{3}$sin(ωx+φ)-cos(ωx+φ)(0<φ<π,ω>0)為偶函數(shù),且函數(shù)y=f(x)圖象的兩相鄰對(duì)稱軸間的距離為$\frac{π}{2}$.
(1)求$f(\frac{7π}{8})$的值;
(2)求函數(shù)g(x)=f(x)+f(x+$\frac{π}{4}$)的對(duì)稱軸與單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.某廠有容量300噸的水塔一個(gè),每天從早六點(diǎn)到晚十點(diǎn)供應(yīng)生活和生產(chǎn)用水,已知:該廠生活用水每小時(shí)10噸,工業(yè)用水總量W(噸)與時(shí)間t(單位:小時(shí),規(guī)定早晨六點(diǎn)時(shí)t=0)的函數(shù)關(guān)系為W=100$\sqrt{t}$,水塔的進(jìn)水量有10級(jí),第一級(jí)每小時(shí)水10噸,以后每提高一級(jí),進(jìn)水量增加10噸.若某天水塔原有水100噸,在供應(yīng)同時(shí)打開進(jìn)水管.問(wèn)該天進(jìn)水量應(yīng)選擇幾級(jí),既能保證該廠用水(即水塔中水不空),又不會(huì)使水溢出?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.設(shè)命題p:函數(shù)f(x)=lg(-mx2+2x-m)的定義域?yàn)镽;
命題q:函數(shù)g(x)=4lnx+$\frac{1}{2}{x^2}$-(m-1)x的圖象上任意一點(diǎn)處的切線斜率恒大于2,
若“p∨q”為真命題,“p∧q”為假命題,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知數(shù)列{an}的前n項(xiàng)和為Sn=$\frac{n(n+1)}{2}$.
(Ⅰ)求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)設(shè)Tn為數(shù)列{bn}的前n項(xiàng)和,其中bn=$\frac{{{a_{n+1}}}}{{2{S_n}•{S_{n+1}}}}$,求Tn;
(Ⅲ)若存在n∈N*,使得Tn-λan≥3λ成立,求出實(shí)數(shù)λ的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.某風(fēng)景區(qū)水面游覽中心計(jì)劃國(guó)慶節(jié)當(dāng)日投入之多3艘游船供游客觀光,過(guò)去10年的數(shù)據(jù)資料顯示每年國(guó)慶節(jié)當(dāng)日客流量X(單位:萬(wàn)人)都大于1,并把客流量分成三段整理得下表:
國(guó)慶節(jié)當(dāng)日客流量X1<X<33≤X≤5X>5
頻數(shù)244
以這10年的數(shù)據(jù)資料記錄的隔斷客流量的頻率作為每年客流量在隔斷發(fā)生的概率,且每年國(guó)慶節(jié)當(dāng)日客流量相互獨(dú)立.
(1)求未來(lái)連續(xù)3年國(guó)慶節(jié)當(dāng)日中,恰好有1年國(guó)慶節(jié)當(dāng)日客流量超過(guò)5萬(wàn)人的概率;
(2)該水面游覽中心希望投入的游船盡可能使用,但每年國(guó)慶節(jié)當(dāng)日游船最多使用量:(單位:艘)受當(dāng)日客流量X(單位:萬(wàn)人)的限制,其關(guān)聯(lián)關(guān)系如下表:
國(guó)慶節(jié)當(dāng)日客流量X1<X<33≤X≤5X>5
游船最多使用量123
若某艘游船國(guó)慶節(jié)當(dāng)日使用,則水面游覽中心國(guó)慶節(jié)當(dāng)日可獲得利潤(rùn)3萬(wàn)元,若某艘游船國(guó)慶節(jié)當(dāng)日不使用,則水面游覽中心國(guó)慶節(jié)當(dāng)日虧損0.5萬(wàn)元,記Y(單位:萬(wàn)元)表示該水面游覽中心國(guó)慶節(jié)當(dāng)日獲得總利潤(rùn),當(dāng)Y的數(shù)學(xué)期望最大時(shí)稱水面游覽中心在國(guó)慶節(jié)當(dāng)日效益最佳,問(wèn)該水面游覽中心的國(guó)慶節(jié)當(dāng)日應(yīng)投入多少艘游船才能使該水面游覽中心在國(guó)慶節(jié)當(dāng)日效益最佳?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.在四棱錐P-ABCD中,平面PAD⊥平面ABCD,∠APD=90°,PA=PD=AB=a,ABCD是矩形,E是PD的中點(diǎn).
(1)求證:PB⊥AC.
(2)求二面角E-AC-D的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.若函數(shù)f(x)=Asin(ωx+φ)(A)>0,ω>0,-$\frac{π}{2}$<φ<$\frac{π}{2}$的部分圖象如圖所示,B,C分別是圖象的最低點(diǎn)和最高點(diǎn),
其中|BC|=$\sqrt{\frac{{π}^{2}}{4}+16}$.
(I)求函數(shù)f(x)的解析式;
(II)在銳角△ABC中,a,b,c分別是角A、B、C的對(duì)邊,若f(A)=$\sqrt{3}$,a=2,求△ABC周長(zhǎng)的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案