1.關(guān)于x的不等式2≤3x+a≤b的解集為{x|1≤x≤2},求實(shí)數(shù)a,b的值.

分析 先求出不等式的解集,得到關(guān)于a,b的方程組,解得即可.

解答 解:不等式2≤3x+a≤b的解為$\frac{1}{3}$(2-a)≤x≤$\frac{1}{3}$(b-a),
∵關(guān)于x的不等式2≤3x+a≤b的解集為{x|1≤x≤2},
∴$\frac{1}{3}$(b-a)=2,$\frac{1}{3}$(2-a)=1,
解得a=-1,b=7.

點(diǎn)評(píng) 本題考查了一元二次等式的解法,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.(1)已知sinα=$\frac{12}{13}$,且-$\frac{3π}{2}$<α<-π,求cosα、tanα的值;
(2)若tanα=-$\sqrt{2}$,0<α<π,求sinα、cosα的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知命題p:方程x2+mx+1=0有兩個(gè)不相等的負(fù)根;命題q:方程4x2+4(m-2)x+1=0無(wú)實(shí)根.若p∨q為真,(p∧q)為假,則m的取值范圍為(1,2]∪[3,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.各項(xiàng)均為正數(shù)的數(shù)列{an},a1=a,a2=b,且對(duì)滿足m+n=p+q的正整數(shù)m,n,p,q都有$\frac{{a}_{m}+{a}_{n}}{(1+{a}_{m})(1+{a}_{n})}$=$\frac{{a}_{p}+{a}_{q}}{(1+{a}_{p})(1+{a}_{q})}$.
(Ⅰ)當(dāng)a=$\frac{1}{2}$,b=$\frac{4}{5}$時(shí),求證:數(shù)列{$\frac{{1-{a_n}}}{{1+{a_n}}}$}是等比數(shù)列,并求通項(xiàng)an;  
(Ⅱ)證明:對(duì)任意a,存在與a有關(guān)的常數(shù)λ,使得對(duì)于每個(gè)正整數(shù)n,都有$\frac{1}{λ}$≤an≤λ.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.如圖,已知雙曲線$\frac{x^2}{a^2}$-$\frac{y^2}{b^2}$=1(a>0,b>0)的左、右焦點(diǎn)分別為F1,F(xiàn)2,|F1F2|=6,P是雙曲線右支上的一點(diǎn),F(xiàn)2P與y軸交于點(diǎn)A,△APF1的內(nèi)切圓在邊PF1上的切點(diǎn)為Q,若|PQ|=1,則雙曲線的離心率是( 。
A.3B.2C.$\sqrt{3}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

6.已知集合A={x|x>a+5或x<a},B={x|2≤x≤4},若A∩B≠∅,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

13.某幾何體的三視圖如圖所示,則該幾何體的體積為$\frac{8}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知f(x)為R上的奇函數(shù),g(x)為R上的偶函數(shù),且f(x)、g(x)不恒為零,對(duì)于以下判斷:①f(x)+g(x)為奇函數(shù);②f(x)-g(x)為奇函數(shù);③f(x)•g(x)為奇函數(shù);④$\frac{f(x)}{g(x)}$為奇函數(shù).其中判斷正確的個(gè)數(shù)為(  )
A.0個(gè)B.1個(gè)C.2個(gè)D.3個(gè)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若函數(shù)f(x)=x2-2ax+9在區(qū)間[2,6]內(nèi)有2個(gè)零點(diǎn),則a的范圍為$(3,\frac{13}{4}]$.

查看答案和解析>>

同步練習(xí)冊(cè)答案