函數(shù)f(x)是以2為周期的周期函數(shù),f(-3)=1,則f(5)=
 

函數(shù)f(x)是以5為周期的周期函數(shù),f(-3)=1,則f(12)=
 
考點:函數(shù)的周期性
專題:計算題,函數(shù)的性質(zhì)及應(yīng)用
分析:由函數(shù)的周期性化簡,從而求解.
解答: 解:由題意,
∵函數(shù)f(x)是以2為周期的周期函數(shù),
∴f(5)=f(2×4+(-3))=f(-3)=1;
∵函數(shù)f(x)是以5為周期的周期函數(shù),
∴f(12)=f(5×3-3)=f(-3)=1;
故答案為:1,1.
點評:本題考查了函數(shù)的周期性與奇偶性的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

當(dāng)x=
 
時,函數(shù)y=x2(2-x2)有最大值,值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知平面向量
a
=(2m+1,3),
b
=(2,m),且
a
b
反向,則|
a
+
b
|等于(  )
A、
2
B、
15
2
2
C、
15
2
D、
10
2
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知不等式ex-k-lnx-k<0有解,則實數(shù)k的取值范圍(  )
A、k>0B、0<k<1
C、k<0或k>1D、k>1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用分離常數(shù)法求y=
3x2-2
x2-2
的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知M=
a2+asinθ+1
a2+acosθ+1
(a,θ∈R,a≠0),則M的最大值與最小值分別為(  )
A、
1+
7
3
,
1-
7
3
B、
4+
7
3
,
4-
7
3
C、
9+4
2
7
,
9-4
2
7
D、
8+4
2
7
,
8-4
2
7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,在正方體ABCD-A1B1C1D1中,E為棱DD1上任意一點,F(xiàn)為對角線DB的中點.
(Ⅰ)求證:平面CFB1⊥平面EFB1;
(Ⅱ)若三棱錐B-EFC的體積為1,且
D1E
D1D
=
3
4

①求此正方體的棱長;
②求異面直線EF與B1C所成角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知某人在早上6:30-7:30之間把報紙送到你家,而你離開家去上學(xué)的時間在早上7:00-8:00之間,那么你離開家前能得到報紙的概率是( 。
A、
1
4
B、
3
4
C、
1
8
D、
7
8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正項等比數(shù)列{an}中,a1=2,且a2,a1+a2,a3成等差數(shù)列.
(Ⅰ) 求數(shù)列{an}的通項公式;
(Ⅱ) 設(shè)bn=(1-
2
an
)2+a(1+
1
an
)
(n∈N*),若a∈[0,2],求數(shù)列{bn}的最小項.

查看答案和解析>>

同步練習(xí)冊答案