【題目】已知點A(﹣10),B10),C0,1),直線yax+ba0)將ABC分割為面積相等的兩部分,則b的取值范圍是( 。

A.01B.C.D.

【答案】B

【解析】

先求得直線yax+ba0)與x軸的交點為M,0),由0可得點M在射線OA上.求出直線和BC的交點N的坐標(biāo),①若點M和點A重合,求得b;②若點M在點O和點A之間,求得b; ③若點M在點A的左側(cè),求得b1.再把以上得到的三個b的范圍取并集,可得結(jié)果.

由題意可得,三角形ABC的面積為 1,

由于直線yax+ba0)與x軸的交點為M,0),

由直線yax+ba0)將ABC分割為面積相等的兩部分,可得b0,

0,故點M在射線OA上.

設(shè)直線yax+bBC的交點為N,則由可得點N的坐標(biāo)為(,).

①若點M和點A重合,如圖:

則點N為線段BC的中點,故N,),

A、N兩點的坐標(biāo)代入直線yax+b,求得ab

②若點M在點O和點A之間,如圖:

此時b,點N在點B和點C之間,

由題意可得三角形NMB的面積等于

,即 ,可得a0,求得 b,

故有b

③若點M在點A的左側(cè),

b,由點M的橫坐標(biāo)1,求得ba

設(shè)直線yax+bAC的交點為P,則由 求得點P的坐標(biāo)為(,),

此時,由題意可得,三角形CPN的面積等于,即 1b|xNxP|

1b||,化簡可得21b2|a21|

由于此時 ba0,0a1,∴21b2|a21|1a2

兩邊開方可得 1b1,∴1b,化簡可得 b1,

故有1b

綜上可得b的取值范圍應(yīng)是 ,

故選:B

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】若二次函數(shù)滿足.且

(1)求的解析式;

(2)若在區(qū)間[-1,1]上不等式恒成立,求實數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直三棱柱ABC﹣A1B1C1中,A1B1=A1C1 , D,E分別是棱BC,CC1上的點(點D 不同于點C),且AD⊥DE,F(xiàn)為B1C1的中點.求證:

(1)平面ADE⊥平面BCC1B1
(2)直線A1F∥平面ADE.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列推理過程不是演繹推理的是( )

①一切奇數(shù)都不能被2整除,2019是奇數(shù),2019不能被2整除;

②由“正方形面積為邊長的平方”得到結(jié)論:正方體的體積為棱長的立方;

③在數(shù)列中,,由此歸納出的通項公式;

④由“三角形內(nèi)角和為”得到結(jié)論:直角三角形內(nèi)角和為.

A. ①② B. ③④ C. ②③ D. ②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】下列有關(guān)線性回歸分析的六個命題:

①線性回歸直線必過樣本數(shù)據(jù)的中心點;

②回歸直線就是散點圖中經(jīng)過樣本數(shù)據(jù)點最多的那條直線;

③當(dāng)相關(guān)性系數(shù)時,兩個變量正相關(guān);

④如果兩個變量的相關(guān)性越強,則相關(guān)性系數(shù)就越接近于1;

⑤殘差圖中殘差點所在的水平帶狀區(qū)域越寬,則回歸方程的預(yù)報精確度越高;

⑥甲、乙兩個模型的分別約為0.88和0.80,則模型乙的擬合效果更好.

其中真命題的個數(shù)為( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四棱錐P﹣ABCD中,PA⊥平面ABCD,AB=4,BC=3,AD=5,∠DAB=∠ABC=90°,E是CD的中點.

(1)證明:CD⊥平面PAE;
(2)若直線PB與平面PAE所成的角和PB與平面ABCD所成的角相等,求四棱錐P﹣ABCD的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在直角坐標(biāo)系xoy中,曲線C1上的點均在C2:(x﹣5)2+y2=9外,且對C1上任意一點M,M到直線x=﹣2的距離等于該點與圓C2上點的距離的最小值.
(1)求曲線C1的方程
(2)設(shè)P(x0 , y0)(y0≠±3)為圓C2外一點,過P作圓C2的兩條切線,分別于曲線C1相交于點A,B和C,D.證明:當(dāng)P在直線x=﹣4上運動時,四點A,B,C,D的縱坐標(biāo)之積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù), 為正實數(shù)

1)當(dāng)時,求曲線在點處的切線方程;

2求證: ;

3)若函數(shù)且只有零點,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某企業(yè)甲,乙兩個研發(fā)小組,他們研發(fā)新產(chǎn)品成功的概率分別為,現(xiàn)安排甲組研發(fā)新產(chǎn)品,乙組研發(fā)新產(chǎn)品.設(shè)甲,乙兩組的研發(fā)是相互獨立的.

(1)求至少有一種新產(chǎn)品研發(fā)成功的概率;

(2)若新產(chǎn)品研發(fā)成功,預(yù)計企業(yè)可獲得萬元,若新產(chǎn)品研發(fā)成功,預(yù)計企業(yè)可獲得利潤萬元,求該企業(yè)可獲得利潤的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案