已知直線l:y=3x+2過拋物線y=ax2(a>0)的焦點.
(1)求拋物線方程;
(2)設(shè)拋物線的一條切線l1,若l1l,求切點坐標.
(1)拋物線y=ax2(a>0)的焦點為(0,
1
4a
),-----------------3分
代入直線y=3x+2,得a=
1
8

(或用焦點坐標為(0,2)來解)拋物線方程x2=8y---------------------7分
(2)設(shè)切點坐標為(x0,y0),--------------------------------9分
由y=
1
8
x,得y′=
1
4
x,即
x0
4
=3
,-------------------------12分
得x0=12,代入拋物線方程得y0=18
切點坐標為(12,18)-----------------------15分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的左、右焦點分別為F1、F2,焦距為2c;若以F2為圓心,b-c為半徑作圓F2,過橢圓上任一點P(x0,y0)作此圓的切線,切點為T,且|PT|的最小值不小于
3
2
(a-c).
(Ⅰ)證明:|PF2|的最小值為a-c;
(Ⅱ)求橢圓的離心率e的取值范圍;
(Ⅲ)若橢圓的短半軸長為1,圓F2與x軸的右交點為Q,過點Q作斜率為2的直線l與橢圓交于A、B兩點,若OA⊥OB,求橢圓的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,直線y=kx+b與橢圓
x2
4
+y2
=1交于A,B兩點,記△AOB的面積為S.
(I)求在k=0,0<b<1的條件下,S的最大值;
(Ⅱ)當|AB|=2,S=1時,求直線AB的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,F(xiàn)1,F(xiàn)2是橢圓
x2
a2
+
y2
b2
=1
(a>b>0)上的焦點,P為橢圓上的點,PF1⊥OX軸,且OP和橢圓的一條長軸頂點A和短軸頂點B的連線AB平行.
(1)求橢圓的離心率e
(2)若Q是橢圓上任意一點,證明∠F1QF2
π
2

(3)過F1與OP垂直的直線交橢圓于M,N,若△MF2N的面積為20
3
,求橢圓方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知中心在原點的雙曲線C的離心率為
2
3
3
,一條準線方程為x=
3
2

(1)求雙曲線C的標準方程
(2)若直線l:y=kx+
2
與雙曲線C恒有兩個不同的交點A和B,且
OA
OB
>2
(其中O為原點),求k的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

設(shè)橢圓
x2
a2
+
y2
b2
=1
(a>b>0)的左、右頂點分別為A(-
2
,0)、B(
2
,0),離心率e=
2
2
.過該橢圓上任一點P作PQ⊥x軸,垂足為Q,點C在QP的延長線上,且|PC|=(
2
-1)|PQ|.
(1)求橢圓的方程;
(2)求動點C的軌跡E的方程;
(3)設(shè)直線MN過橢圓的右焦點與橢圓相交于M、N兩點,且|MN|=
8
2
7
,求直線MN的方程.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知斜率為1的直線l過橢圓
x2
4
+y2=1
的右焦點F2
(1)求直線l的方程;
(2)若l與橢圓交于點A、B兩點,F(xiàn)1為橢圓左焦點,求SF1AB

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)
過點(1,
2
2
)
,離心率為
2
2
,左、右焦點分別為F1、F2.點P為直線l:x+y=2上且不在x軸上的任意一點,直線PF1和PF2與橢圓的交點分別為A、B和C、D,O為坐標原點.設(shè)直線PF1、PF2的斜率分別為k1、k2
(Ⅰ)證明:
1
k1
-
3
k2
=2
;
(Ⅱ)問直線l上是否存在點P,使得直線OA、OB、OC、OD的斜率kOA、kOB、kOC、kOD滿足kOA+kOB+kOC+kOD=0?若存在,求出所有滿足條件的點P的坐標;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

過x軸上動點A(a,0)引拋物線y=x2+1的兩條切線AP、AQ,P、Q為切點.
(1)若切線AP,AQ的斜率分別為k1和k2,求證:k1•k2為定值,并求出定值;
(2)求證:直線PQ恒過定點,并求出定點坐標;
(3)當
S△APO
PQ
最小時,求
AQ
AP
的值.

查看答案和解析>>

同步練習冊答案