【題目】如圖,在三棱錐中,已知平面平面

(1)若,,求證:;

(2)若過點作直線平面,求證:平面

【答案】(1)見解析.

(2)見解析.

【解析】分析:(1)根據(jù)平面與平面垂直的性質和條件,可以得到⊥平面.再根據(jù)直線與平面垂直的性質,得到;利用線面垂直的判定和性質,即可得到。

(2) 在平面內過點,利用平面的交線,則可以得到⊥平面,根據(jù)線面垂直的性質,從而得到//平面。

詳解:

1)因為平面⊥平面,平面 平面 ,

平面,,所以⊥平面

因為平面,所以

又因為,且平面,

所以⊥平面, 又因為平面,所以

2)在平面內過點,垂足為

因為平面⊥平面,又平面平面BC

平面,所以⊥平面

⊥平面,所以//

平面平面,//平面

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

【題目】在直角坐標系xOy中,已知點A(1,1),B(2,3),C(3,2),點P(x,y)在△ABC三邊圍成的區(qū)域(含邊界)上.
(1)若 ,求| |;
(2)設 =m +n (m,n∈R),用x,y表示m﹣n,并求m﹣n的最大值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】6把椅子排成一排,3人隨機就座,任何兩人不相鄰的坐法種數(shù)為(
A.144
B.120
C.72
D.24

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù)有兩個極值點(為自然對數(shù)的底數(shù)).

(Ⅰ)求實數(shù)的取值范圍;

(Ⅱ)求證.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】將圓x2+y2=1上每一點的橫坐標保持不變,縱坐標變?yōu)樵瓉淼?倍,得曲線C.
(1)寫出C的參數(shù)方程;
(2)設直線l:2x+y﹣2=0與C的交點為P1 , P2 , 以坐標原點為極點,x軸正半軸為極軸建立極坐標系,求過線段P1P2的中點且與l垂直的直線的極坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知函數(shù),

(1)求的最大值與最小值;

(2)若對任意的,恒成立,求實數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在長方體ABCD﹣A1B1C1D1中,AB=11,AD=7,AA1=12.一質點從頂點A射向點E(4,3,12),遇長方體的面反射(反射服從光的反射原理),將第i﹣1次到第i次反射點之間的線段記為li(i=2,3,4),l1=AE,將線段l1 , l2 , l3 , l4豎直放置在同一水平線上,則大致的圖形是( )

A.
B.
C.
D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在三棱錐P﹣ABC中,D,E,F(xiàn)分別為棱PC,AC,AB的中點,已知PA⊥AC,PA=6,BC=8,DF=5.求證:

(1)直線PA∥平面DEF;
(2)平面BDE⊥平面ABC.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】女共名同學從左至右排成一排合影,要求左端排男同學,右端排女同學,且女同學至多有人排在一起,則不同的排法種數(shù)為( )

A. B. C. D.

查看答案和解析>>

同步練習冊答案