分析 (1)求出函數(shù)的導(dǎo)數(shù),通過(guò)討論a的范圍,求出函數(shù)的單調(diào)區(qū)間即可;
(2)求出f(x)min=f($\frac{1}{a}$)=a-alna-1,問(wèn)題轉(zhuǎn)化為a-alna-1≥0恒成立即可,令g(a)=a-alna-1,(a>0),根據(jù)函數(shù)的單調(diào)性求出a的范圍即可;
(3)求出g(x)的導(dǎo)數(shù),得到g′(x)≥1,從而判斷結(jié)論即可.
解答 解:(1)f(x)=$\frac{1}{x}$+alnx-1的定義域是(0,+∞),
f′(x)=$\frac{ax-1}{{x}^{2}}$,
a≤0時(shí),f′(x)<0,f(x)遞減,
a>0時(shí),令f′(x)>0,解得:x>$\frac{1}{a}$,
令f′(x)<0,解得:0<x<$\frac{1}{a}$,
∴f(x)在(0,$\frac{1}{a}$)遞減,在($\frac{1}{a}$,+∞)遞增;
(2)由(1)得,a≤0時(shí),f(x)遞減,不合題意,
a>0時(shí),f(x)在(0,$\frac{1}{a}$)遞減,在($\frac{1}{a}$,+∞)遞增,
∴f(x)min=f($\frac{1}{a}$)=a-alna-1,
若對(duì)任意的x>0,f(x)≥0恒成立
只需a-alna-1≥0恒成立即可,
令g(a)=a-alna-1,(a>0),
g′(a)=-lna,
令g′(a)>0,解得:0<a<1,
令g′(a)<0,解得:a>1,
∴g(a)在(0,1)遞增,在(1,+∞)遞減,
∴g(a)max=g(1)=0,
故a=1時(shí),f(x)≥0恒成立,
故a∈{1};
(3)∵a=1時(shí),g(x)=[f(x)-$\frac{1}{x}$]•ex+x,
∴g(x)=(lnx-1)ex+x,x∈(0,+∞),
∴g′(x)=(lnx-1)′ex+(lnx-1)(ex)′+1=($\frac{1}{x}$+lnx-1)ex+1,
由(2)易知,f(x)min=f(1)=0,
∴g′(x)≥1,
故曲線y=g(x)上不存在不同的兩點(diǎn)M,N,使得直線MN的斜率等于1.
點(diǎn)評(píng) 本題考查了函數(shù)的單調(diào)性、最值問(wèn)題,考查導(dǎo)數(shù)的應(yīng)用以及函數(shù)恒成立問(wèn)題,是一道綜合題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | {x|x>0} | B. | {x|x<0} | C. | {x|x<-1或0<x<1} | D. | {x|x<-1或x>1} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com