【題目】某市有兩家共享單車(chē)公司,在市場(chǎng)上分別投放了黃、藍(lán)兩種顏色的單車(chē),已知黃、藍(lán)兩種顏色的單車(chē)的投放比例為2:1.監(jiān)管部門(mén)為了了解兩種顏色的單車(chē)的質(zhì)量,決定從市場(chǎng)中隨機(jī)抽取5輛單車(chē)進(jìn)行體驗(yàn),若每輛單車(chē)被抽取的可能性相同.

(1)求抽取的5輛單車(chē)中有2輛是藍(lán)色顏色單車(chē)的概率;

(2)在騎行體驗(yàn)過(guò)程中,發(fā)現(xiàn)藍(lán)色單車(chē)存在一定質(zhì)量問(wèn)題,監(jiān)管部門(mén)決定從市場(chǎng)中隨機(jī)地抽取一輛送技術(shù)部門(mén)作進(jìn)一步抽樣檢測(cè),并規(guī)定若抽到的是藍(lán)色單車(chē),則抽樣結(jié)束,若抽取的是黃色單車(chē),則將其放回市場(chǎng)中,并繼續(xù)從市場(chǎng)中隨機(jī)地抽取下一輛單車(chē),并規(guī)定抽樣的次數(shù)最多不超過(guò))次.在抽樣結(jié)束時(shí),已取到的黃色單車(chē)以表示,求的分布列和數(shù)學(xué)期望.

【答案】(I) . (II) 見(jiàn)解析.

【解析】試題分析(1) 設(shè)表示“抽取的5輛單車(chē)中藍(lán)顏色單車(chē)的個(gè)數(shù)”,則,可求5輛單車(chē)中有2輛是藍(lán)顏色單車(chē)的概率.

(2) ξ的可能取值為:0,1,2,…, . 并且有, ,…… , . 可得ξ的分布列及的數(shù)學(xué)期望,再由錯(cuò)位相減法求解即可.

試題解析(I) 因?yàn)殡S機(jī)地抽取一輛單車(chē)是藍(lán)色單車(chē)的概率為,表示“抽取的5輛單車(chē)中藍(lán)顏色單車(chē)的個(gè)數(shù)”,則服從二項(xiàng)分布,即

所以抽取的5輛單車(chē)中有2輛是藍(lán)顏色單車(chē)的概率.

(2) ξ的可能取值為:0,1,2,…, .

, ,……, .

所以ξ的分布列為:

ξ

0

1

2

……

……

的數(shù)學(xué)期望為:

, (1)

. (2)

(1)-(2)得:

,

.

所以.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖所示,在直三棱柱中, ,點(diǎn)分別是的中點(diǎn).

(1)求證: ∥平面

(2)若,求證: .

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】在直角坐標(biāo)系中,點(diǎn)到兩點(diǎn)的距離之和為4,設(shè)點(diǎn)的軌跡為,直線(xiàn)交于兩點(diǎn)。

(Ⅰ)寫(xiě)出的方程;

(Ⅱ)若,求的值。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知圓軸相切于點(diǎn),且被軸所截得的弦長(zhǎng)為,圓心在第一象限.

(Ⅰ)求圓的方程;

(Ⅱ)若點(diǎn)是直線(xiàn)上的動(dòng)點(diǎn),過(guò)作圓的切線(xiàn),切點(diǎn)為,當(dāng)△的面積最小時(shí),求切線(xiàn)的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,四邊形是矩形,沿對(duì)角線(xiàn)折起,使得點(diǎn)在平面上的射影恰好落在邊上.

(1)求證:平面平面;

(2)當(dāng)時(shí),求二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知函數(shù),曲線(xiàn)在點(diǎn)處的切線(xiàn)方程為.

(1)求實(shí)數(shù)的值;

(2)設(shè), 分別是函數(shù)的兩個(gè)零點(diǎn),求證.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某校從高一年級(jí)參加期末考試的學(xué)生中抽出60名,其成績(jī)(均為整數(shù))的頻率分布直方圖如圖所示,由此估計(jì)此次考試成績(jī)的中位數(shù)、眾數(shù)分別是(

A.73.3,75B.73.380

C.70,70D.70, 75

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】某高校共有15000人,其中男生10500人,女生4500人,為調(diào)查該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的情況,采用分層抽樣的方法,收集300位學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的樣本數(shù)據(jù)(單位:小時(shí))

(1)應(yīng)收集多少位女生樣本數(shù)據(jù)?

(2)根據(jù)這300個(gè)樣本數(shù)據(jù),得到學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間的頻率分布直方圖(如圖所示),其中樣本數(shù)據(jù)分組區(qū)間為:.估計(jì)該校學(xué)生每周平均體育運(yùn)動(dòng)時(shí)間超過(guò)4個(gè)小時(shí)的概率.

(3)在樣本數(shù)據(jù)中,有60位女生的每周平均體育運(yùn)動(dòng)時(shí)間超過(guò)4個(gè)小時(shí).請(qǐng)完成每周平均體育運(yùn)動(dòng)時(shí)間與性別的列聯(lián)表,并判斷是否有的把握認(rèn)為該校學(xué)生的每周平均體育運(yùn)動(dòng)時(shí)間與性別有關(guān).

附:

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

【題目】設(shè)橢圓的右焦點(diǎn)為,右頂點(diǎn)為.已知,其中為原點(diǎn), 為橢圓的離心率.

1)求橢圓的方程及離心率的值;

2)設(shè)過(guò)點(diǎn)的直線(xiàn)與橢圓交于點(diǎn)不在軸上),垂直于的直線(xiàn)與交于點(diǎn),與軸交于點(diǎn).,且,求直線(xiàn)的斜率的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案