已知函數(shù)f(x)=
x+1(x>0)
π
x
(x=0)
0(x<0)
,則f{f[f(-1)]}=
 
考點(diǎn):函數(shù)的值
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:由已知得f(-1)=0,f[f(-1)]=f(0)=π,從而f{f[f(-1)]}=f(π)=π+1.
解答: 解:由已知得f(-1)=0,
f[f(-1)]=f(0)=π,
f{f[f(-1)]}=f(π)=π+1.
故答案為:π+1.
點(diǎn)評(píng):本題考查函數(shù)值的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意函數(shù)性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知cos2α=
9
25
,有α為第三象限角,則tan2α=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)數(shù)列{an}的通項(xiàng)an=13-2n,前n項(xiàng)和為Sn,則當(dāng)Sn最大時(shí),(2x-
1
x
n的展開式中常數(shù)項(xiàng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

命題“?x∈R,x2-2x+1≥0”的否定是( 。
A、?x0∈R,x02-2x0+1≥0
B、?x0∈R,x02-2x0+1≤0
C、?x0∈R,x02-2x0+1<0
D、?x0∈R,x02-2x0+1>0

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若tanα<0,且sinα>cosα,則α在( 。
A、第一象限B、第二象限
C、第三象限D、第四象限

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

a=1,b=9的等比中項(xiàng)為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

復(fù)數(shù)(
1-i
1+i
6=( 。
A、-1B、1C、-iD、i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知橢圓Ω:
x2
a2
+
y2
b2
=1(a>b>0),其離心率與雙曲線
x2
3
-y2=1的離心率互為倒數(shù),而直線x+y=
3
恰過橢圓Ω的焦點(diǎn).
(1)求橢圓Ω的方程;
(2)設(shè)橢圓的左右頂點(diǎn)分別為A、B,上頂點(diǎn)為C,點(diǎn)P是橢圓上不同于頂點(diǎn)的任意一點(diǎn),連接BP交直線AC于點(diǎn)M,連接CP與x軸交于點(diǎn)N,記直線MN,MB斜率分別為k1,k2,求2k1-k2是否為定值,若是求出該定值并證明,若不是說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓:x2+y2+2y=0,求圓心和半徑.

查看答案和解析>>

同步練習(xí)冊(cè)答案