一個幾何體的三視圖如圖所示(單位長度為:cm):
主視圖 側視圖 俯視圖
(1)求該幾何體的體積; (2)求該幾何題的表面積。
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)如圖所示,在四棱錐P—ABCD中,底面是邊長為2的菱形,∠DAB=60°,對角線AC與BD交于點O,PO⊥平面ABCD,PB與平面ABCD所成角為60°.
(1)求四棱錐的體積;
(2)若E是PB的中點,求異面直線DE與PA所成角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(本小題滿分12分)如圖所示的幾何體是由以等邊三角形為底面的棱柱被平面所截而得,已知平面,,,,為的中點,面.
(Ⅰ)求的長;
(Ⅱ)求證:面面;
(Ⅲ)求平面與平面相交所成銳角二面角的余弦值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如右圖所示,在正三棱柱ABC—A1B1C1中,AB=3,AA1=4,M為AA1的中點,P是BC上一點,且由P沿棱柱側面經過棱CC1到M的最短路線長為,設這條最短路線與CC1的交點為N.求:
(1)該三棱柱的側面展開圖的對角線長;
(2)PC和NC的長.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,三棱錐P-ABC中,PA⊥底面ABC,AB⊥BC,DE垂直平分線段PC,且分別交AC、PC于D、E兩點,又PB=BC,PA=AB。
(1)求證:PC⊥平面BDE;
(2)若點Q是線段PA上任一點,判斷BD、DQ的位置關系,并證明你的結論;
(3)若AB=2,求三棱錐B-CED的體積
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
如圖,側棱垂直底面的三棱柱的底面位于平行四邊形
中,,,,點為中點.
(1)求證:平面平面.
(2)設二面角的大小為,直線與平面所
成的角為,求的值.
查看答案和解析>>
科目:高中數學 來源: 題型:解答題
(12分)如圖,在三棱錐P—ABC中,PA⊥底面ABC,∠BAC=60°,AB=AC=2,以PA為直徑的球O和PB、PC分別交于B1、C1
(1)求證B1C1∥平面ABC
(2)若二面角C—PB—A的大小為arctan2,試求球O的表面積。
查看答案和解析>>
湖北省互聯(lián)網違法和不良信息舉報平臺 | 網上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com