在直三棱柱中,

(1)求異面直線 與所成角的大。
(2)求多面體的體積。
(1)(2)

試題分析:解:(1)由條件,因此即為異面直線所成角。
由條件得,,
中,求出。                   
,。  
所以異面直線所成角的大小為。   
(2)由圖可知,,    
由條件得,,
,                                       
因此                     
點評:求異面直線所成的角,可通過轉(zhuǎn)化為共面直線所成的角來求解,有時也可通過向量來求。
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐中,側(cè)棱底面,底面為矩形,上一點,,

(I)若的中點,求證平面;
(II)求三棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

正方形的邊長為2,分別為邊的中點,是線段的中點,如圖,把正方形沿折起,設(shè)

(1)求證:無論取何值,不可能垂直;
(2)設(shè)二面角的大小為,當(dāng)時,求的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

在直角梯形ABCD中,AD//BC,,,如圖(1).把沿翻折,使得平面,如圖(2).

(Ⅰ)求證:;
(Ⅱ)求三棱錐的體積;
(Ⅲ)在線段上是否存在點N,使得?若存在,請求出的值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖:是⊙的直徑,垂直于⊙所在的平面,PA="AC," 是圓周上不同于的任意一點,(1) 求證:平面。(2) 求二面角 P-BC-A 的大小。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

用長為4,寬為2的矩形做側(cè)面圍成一個圓柱,此圓柱軸截面面積為(   ).
A.8B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,在四棱錐P-ABCD中,底面是邊長為2的菱形,且∠BAD=120°,且PA⊥平面ABCD,PA=,M,N分別為PB,PD的中點.

(1)證明:MN∥平面ABCD;
(2) 過點A作AQ⊥PC,垂足為點Q,求二面角A-MN-Q的平面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

如圖,四邊形是正方形,為對角線的交點,的中點;

(1)求證:;
(2)求證:.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

(本小題滿分12分)
如圖,在四棱柱中,,底面是直角梯形,,,,異面直線所成角為

(1)求證:平面;
(2)求直線與平面所成角的正弦值.

查看答案和解析>>

同步練習(xí)冊答案