【題目】已知函數(shù),, 為自然對(duì)數(shù)的底數(shù).
(1)若,,證明:當(dāng)時(shí),恒成立;
(2)若,,在上存在兩個(gè)極值點(diǎn),求的取值范圍.
【答案】(1)詳見(jiàn)解析;(2).
【解析】
(1)根據(jù)導(dǎo)函數(shù)求出函數(shù)的單調(diào)性得函數(shù)的最值,即可得證;
(2)求出導(dǎo)函數(shù),將問(wèn)題轉(zhuǎn)化為討論的零點(diǎn)問(wèn)題.
解:(1)由題知, ,
當(dāng)時(shí),,在上單調(diào)遞減,
當(dāng)時(shí),,在上單調(diào)遞增,
所以,當(dāng)時(shí),,命題得證;
(2)由題知:,,
所以與,在上正負(fù)同號(hào),
當(dāng)時(shí),沒(méi)有零點(diǎn),在上沒(méi)有極值點(diǎn);
當(dāng)時(shí),令,則
當(dāng)時(shí),,在)上單調(diào)遞減,
當(dāng)時(shí),,在上單調(diào)遞增,
若,即,,在上沒(méi)有極值點(diǎn)
若,即;因?yàn)?/span>,所以在上有1個(gè)零點(diǎn);
由(1)知:所以,
所以在上也有1個(gè)零點(diǎn);
所以,當(dāng)時(shí),,在上單調(diào)遞增,
當(dāng)時(shí),,在上單調(diào)遞減,
當(dāng)時(shí),,在上單調(diào)遞增,
當(dāng)時(shí),在上有兩個(gè)極值點(diǎn):;
所以
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】為了解某高校學(xué)生中午午休時(shí)間玩手機(jī)情況,隨機(jī)抽取了100名大學(xué)生進(jìn)行調(diào)查.下面是根據(jù)調(diào)查結(jié)果繪制的學(xué)生日均午休時(shí)間的頻率分布直方圖,將日均午休時(shí)玩手機(jī)不低于40分鐘的學(xué)生稱(chēng)為“手機(jī)控”.
(1)求列聯(lián)表中未知量的值;
非手機(jī)控 | 手機(jī)控 | 合計(jì) | |
男 | |||
女 | 10 | 55 | |
合計(jì) |
(2)能否有的把握認(rèn)為“手機(jī)控與性別有關(guān)”?
.
0.05 | 0.10 | |
3.841 | 6.635 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)有如下三個(gè)命題:
甲:相交直線l、m都在平面內(nèi),并且都不在平面內(nèi);
乙:直線l、m中至少有一條與平面相交;
丙:平面與平面相交.
當(dāng)甲成立時(shí)
A. 乙是丙的充分而不必要條件
B. 乙是丙的必要而不充分條件
C. 乙是丙的充分且必要條件
D. 乙既不是丙的充分條件又不是丙的必要條件
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在某校舉行的航天知識(shí)競(jìng)賽中,參與競(jìng)賽文科生與理科生人數(shù)之比為,且成績(jī)分布在,分?jǐn)?shù)在80以上(含80)的同學(xué)獲獎(jiǎng).按文理科用分層抽樣的方法抽取200人的成績(jī)作為樣本,得到成績(jī)的頻率分布直方圖如圖所示.
文科生 | 理科生 | 合計(jì) | |
獲獎(jiǎng) | 5 | ||
不獲獎(jiǎng) | |||
合計(jì) | 200 |
參考公式: (其中為樣本容量)
隨機(jī)變量的概率分布:
0.25 | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 | |
1.323 | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
(1)求的值;
(2)填寫(xiě)上方的列聯(lián)表,并判斷能否有超過(guò)的把握認(rèn)為“獲獎(jiǎng)與學(xué)生的文、理科有關(guān)”?
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)當(dāng)時(shí),求函數(shù)的極小值;
(2)討論函數(shù)的單調(diào)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(1)求的單調(diào)區(qū)間;
(2)當(dāng)時(shí),恒成立,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù).
(Ⅰ)當(dāng)時(shí),求的單調(diào)區(qū)間;
(Ⅱ)設(shè)函數(shù),當(dāng)時(shí),若是的唯一極值點(diǎn),求.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓()的離心率為,圓與軸正半軸交于點(diǎn),圓在點(diǎn)處的切線被橢圓截得的弦長(zhǎng)為.
(Ⅰ)求橢圓的方程;
(Ⅱ)設(shè)圓上任意一點(diǎn)處的切線交橢圓于點(diǎn),試判斷是否為定值?若為定值,求出該定值;若不是定值,請(qǐng)說(shuō)明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知焦點(diǎn)在x軸上的橢圓C1的長(zhǎng)軸長(zhǎng)為8,短半軸為2,拋物線C2的頂點(diǎn)在原點(diǎn)且焦點(diǎn)為橢圓C1的右焦點(diǎn).
(1)求拋物線C2的標(biāo)準(zhǔn)方程;
(2)過(guò)(1,0)的兩條相互垂直的直線與拋物線C2有四個(gè)交點(diǎn),求這四個(gè)點(diǎn)圍成四邊形的面積的最小值.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com