已知函數(shù)f(x)=2x3-3x2+3.
(1)求曲線(xiàn)y=f(x)在點(diǎn)x=2處的切線(xiàn)方程;
(2)若關(guān)于x的方程f(x)+m=0有三個(gè)不同的實(shí)根,求實(shí)數(shù)m的取值范圍.
(1)當(dāng)x=2時(shí),f(2)=7
故切點(diǎn)坐標(biāo)為(2,7)
又∵f′(x)=6x2-6x.
∴f′(2)=12
即切線(xiàn)的斜率k=12
故曲線(xiàn)y=f(x)在點(diǎn)(2,f(2))處的切線(xiàn)方程為y-7=12(x-2)
即12x-y-17=0
(2)令f′(x)=6x2-6x=0,解得x=0或x=1
當(dāng)x<0,或x>1時(shí),f′(x)>0,此時(shí)函數(shù)為增函數(shù),
當(dāng)0<x<1時(shí),f′(x)<0,此時(shí)函數(shù)為減函數(shù),
故當(dāng)x=0時(shí),函數(shù)f(x)取極大值3,
當(dāng)x=1時(shí),函數(shù)f(x)取極小值2,
若關(guān)于x的方程f(x)+m=0有三個(gè)不同的實(shí)根,則2<-m<3,即-3<m<-2
故實(shí)數(shù)m的取值范圍為(-3,-2)
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

設(shè)函數(shù)f(x)=x3+ax+b的圖象為曲線(xiàn)C,直線(xiàn)y=kx-2與曲線(xiàn)C相切于點(diǎn)(1,0).則k=______;函數(shù)f(x)的解析式為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

曲線(xiàn)f(x)=
1
3
x3
在x=2處切線(xiàn)方程的斜率是(  )
A.4B.2C.1D.
8
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

已知A是曲線(xiàn)C1:y=
a
x-2
(a>0)與曲線(xiàn)C2:x2+y2=5的一個(gè)公共點(diǎn).若C1在A處的切線(xiàn)與C2在A處的切線(xiàn)互相垂直,則實(shí)數(shù)a的值是______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

已知曲線(xiàn)y=
1
3
x3+
1
2
x2+4x-7在點(diǎn)Q處的切線(xiàn)的傾斜角α滿(mǎn)足sin2α=
16
17
,則此切線(xiàn)的方程為( 。
A.4x-y+7=0或4x-y-6
5
6
=0
B.4x-y-6
5
6
=0
C.4x-y-7=0或4x-y-6
5
6
=0
D.4x-y-7=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

若函數(shù)y1=sin(2x1)+
1
2
(x1∈[0,π]),函數(shù)y2=x2+3,則(x1-x22+(y1-y22的最小值為(  )
A.
2
12
π+
5
2
-
6
4
B.
2
12
π
C.(
5
2
-
6
4
2
D.
(π-3
3
+15)
2
72

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

若曲線(xiàn)C:y=x3-2ax2+2ax上任意點(diǎn)處的切線(xiàn)的傾斜角都為銳角,那么整數(shù)a的值為_(kāi)_____.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

已知函數(shù)f(x)=
2ax-a2+1
x2+1
(x∈R),其中a∈R.
(Ⅰ)當(dāng)a=1時(shí),求曲線(xiàn)y=f(x)在點(diǎn)(2,f(2))處的切線(xiàn)方程;
(Ⅱ)當(dāng)a≠0時(shí),求函數(shù)f(x)的單調(diào)區(qū)間與極值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

an為(1+x)n+1的展開(kāi)式中含xn-1項(xiàng)的系數(shù),則
lim
n→∞
(
1
a1
+
1
a2
+…+
1
an
)
=______.

查看答案和解析>>

同步練習(xí)冊(cè)答案