5.已知直線x+ay=1-a與直線(a-2)x+3y+2=0垂直,則實(shí)數(shù)a=$\frac{1}{2}$.

分析 對a分類討論,利用兩條直線相互垂直的充要條件即可得出.

解答 解:當(dāng)a=0時,兩條直線方程分別化為:x=1,-2x+5=0,此時兩條直線不垂直.
當(dāng)a≠0時,兩條直線相互垂直,可得:-$\frac{1}{a}×(-\frac{a-2}{3})$=-1,解得a=$\frac{1}{2}$.
綜上可得:a=$\frac{1}{2}$.
故答案為:$\frac{1}{2}$.

點(diǎn)評 本題考查了兩條直線相互垂直的充要條件,考查了分類討論方法、推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=(kx+a)ex的極值點(diǎn)為-a-1,其中k,a∈R,且a≠0.
(1)若曲線y=f(x)在點(diǎn)A(0,a)處的切線l與直線y=|2a-2|x平行,求l的方程;
(2)若?a∈[1,2],函數(shù)f(x)在(b-ea,2)上為增函數(shù),求證:e2-3≤b<ea+2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知數(shù)列{an}滿足:a1=2,an+1=1-$\frac{1}{{a}_{n}}$,則a2016=(  )
A.2B.$\frac{1}{2}$C.-1D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某大型超市規(guī)定購買商品每滿100元可以領(lǐng)到一張獎券,每滿200元可以領(lǐng)到2張獎券,以次類推,抽獎方法是:甲箱子里裝有1個紅球、2個白球,乙箱子里裝有3個紅球、2個白球,這些球除顏色外完全相同,每次抽獎從這兩個箱子里各隨機(jī)摸出2個球,若摸出的紅球不少于2個,則獲獎(每次抽獎結(jié)束后將球放回原箱),甲顧客從該超市購買了200元的商品.
(Ⅰ)求在1次抽獎中獲獎的概率;
(Ⅱ)求甲顧客獲獎次數(shù)X的分布列及數(shù)學(xué)期望E(X).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.直線$\left\{\begin{array}{l}x=1+\frac{4}{5}t\\ y=-1+\frac{3}{5}t\end{array}\right.$(t為參數(shù))被曲線ρ=$\sqrt{2}$cos(θ+$\frac{π}{4}$)所截的弦長為( 。
A.$\frac{1}{5}$B.$\frac{7}{10}$C.$\frac{7}{5}$D.$\frac{5}{7}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.有下列敘述;
①若f(x)=|x-1|+|x+a|為區(qū)間[-3,b]上的偶函數(shù),則a+b=4;
②若關(guān)于x的方程x2-(2k+1)x+k2=0有兩個大于1的實(shí)數(shù)根,則k的取值范圍為(2,+∞);
③已知函數(shù)f(x)=x|x|,若對任意的x∈[t,t+2],不等式f(x+t)≥2f(x)恒成立,則實(shí)數(shù)t的取值范圍是[$\sqrt{2}$,+∞);
④已知A和B是單位圓O上的兩點(diǎn),∠AOB=$\frac{2}{3}$π,點(diǎn)C在劣弧$\widehat{AB}$上,若$\overrightarrow{OC}$=x$\overrightarrow{OA}$+y$\overrightarrow{OB}$,其中x,y∈R,則x+y的最大值是2.
其中正確敘述的個數(shù)為(  )
A.1個B.2個C.3個D.4個

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.正四棱錐的底面邊長為12cm,側(cè)棱長為10cm,求此正四棱錐的高和斜高.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

14.已知a、b∈R,命題:若ab≠0,則a≠0且b≠0的逆否命題是若a=0或b=0,則ab=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.如圖是由選項(xiàng)圖中哪個平面圖形旋轉(zhuǎn)得到的( 。
A.B.C.D.

查看答案和解析>>

同步練習(xí)冊答案