分析 由條件利用余弦定理可得cosA=$\frac{1}{2}$,可得A=60°.再根據(jù)sinB•sinC=sin2A,可得bc=a2,即(b-c)2=0,即b=c,綜合可得結論.
解答 解:在△ABC中,∵(b+c+a)(b+c-a)=3bc,
∴化簡可得:b2+c2-a2=bc,
∴由余弦定理可得cosA=$\frac{^{2}+{c}^{2}-{a}^{2}}{2bc}$=$\frac{1}{2}$,
∴A=60°.
再根據(jù)sinB•sinC=sin2A,可得bc=a2,
∴b2+c2=a2+bc=2bc,
即(b-c)2=0,
∴b=c.
綜上可得,△ABC為等邊三角形,
故答案為:等邊三角形.
點評 本題主要考查正弦定理和余弦定理的應用,考查了轉化思想,屬于基礎題.
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 10m | B. | 30m | C. | 10m | D. | 10m |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com