精英家教網 > 高中數學 > 題目詳情

【題目】已知橢圓經過點,離心率為.

(Ⅰ)求橢圓的方程;

(Ⅱ)直線與橢圓交于兩點,點是橢圓的右頂點,直線與直線分別與軸交于兩點,試問在軸上是否存在一個定點使得?若是,求出定點的坐標;若不是,說明理由.

【答案】(Ⅰ);(Ⅱ)存在定點使得.

【解析】試題分析:

由題意結合橢圓所過的點和橢圓的離心率可求得.則橢圓的方程為.

Ⅱ)設存在定點使得.聯(lián)立直線方程與橢圓方程可得.,結合韋達定理有直線的方程為:,,直線的方程為:,.由向量垂直的 充要條件有,據此求解關于n的方程可得.則存在定點使得.

試題解析:

Ⅰ)由題意可知,,,.

解得,.

所以.

所以橢圓的方程為.

Ⅱ)設存在定點使得.

.

,.

因為,所以直線的方程為:,,

直線的方程為:,.

則有,,

,整理得,.

所以存在定點使得.

練習冊系列答案
相關習題

科目:高中數學 來源: 題型:

【題目】已知圓C:,直線過定點.

(1)若與圓相切,求的方程;

(2)若與圓相交于兩點,線段的中點為,又的交點為,判斷是否為定值.若是,求出定值;若不是,請說明理由.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】節(jié)能減排以來,蘭州市100戶居民的月平均用電量單位:度,以分組的頻率分布直方圖如圖.

求直方圖中x的值;求月平均用電量的眾數和中位數;

估計用電量落在中的概率是多少?

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】若關于x的方程 sinx+cosx=k在區(qū)間[0, ]上有兩個不同的實數解,則實數k的取值范圍為

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】數列{an}的前n項和Sn=2n+1,
(1)求{an}的通項公式
(2)設bn=log2an+2 , 求 的前n項和Tn

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】中東呼吸綜合征(簡稱MERS)是由一種新型冠狀病毒(MERS﹣CoV)引起的病毒性呼吸道疾病.截至2015年6月1日,韓國中東呼吸綜合征感染者有43人,6月2日,韓國中東呼吸綜合征感染者新增2人,3日起每天的新感染者平均比前一天的新感染者增加1人.由于醫(yī)療部門采取措施,MERS病毒的傳播得到控制,從某天起,每天的新感染者平均比前一天的新感染者減少1人,到6月20日止,MERS的患者共有180人,問6月幾日感染MERS的新患者人數最多?并求這一天的新患者人數.

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】已知函數f(x)= ,且函數g(x)=loga(x2+x+2)(a>0,且a≠1)在[﹣ ,1]上的最大值為2,若對任意x1∈[﹣1,2],存在x2∈[0,3],使得f(x1)≥g(x2),則實數m的取值范圍是(
A.(﹣∞,﹣ ]
B.(﹣∞, ]
C.[ ,+∞)
D.[﹣ ,+∞]

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】將紅、黑、藍、白5張紙牌(其中白紙牌有2張)隨機分發(fā)給甲、乙、丙、丁4個人,每人至少分得1張,則下列兩個事件為互斥事件的是( )

A. 事件“甲分得1張白牌”與事件“乙分得1張紅牌”

B. 事件“甲分得1張紅牌”與事件“乙分得1張藍牌”

C. 事件“甲分得1張白牌”與事件“乙分得2張白牌”

D. 事件“甲分得2張白牌”與事件“乙分得1張黑牌”

查看答案和解析>>

科目:高中數學 來源: 題型:

【題目】如圖,棱柱ABCD-A1B1C1D1中,底面ABCD是平行四邊形,側棱AA1⊥底面ABCD,AB=1,AC=,BC=BB1=2.

(Ⅰ)求證:AC⊥平面ABB1A1;

(Ⅱ)求點D到平面ABC1的距離d.

查看答案和解析>>

同步練習冊答案