已知函數(shù)f(x)=2
x
+
5-x
,若關(guān)于x的不等式f(x)≤|m-2|恒成立,則實(shí)數(shù)m的取值范圍是
 
考點(diǎn):柯西不等式
專題:不等式
分析:由柯西不等式可得(2
x
+
5-x
2≤(22+12)[(
x
2+(
5-x
2]=25,關(guān)于x的不等式f(x)≤|m-2|恒成立,等價(jià)于|m-2|≥5,即可求出實(shí)數(shù)m的取值范圍.
解答: 由柯西不等式可得(2
x
+
5-x
2≤(22+12)[(
x
2+(
5-x
2]=25,
當(dāng)且僅當(dāng)
x
2
=
5-x
1
,即x=4時(shí)等號(hào)成立;
關(guān)于x的不等式f(x)≤|m-2|恒成立,等價(jià)于|m-2|≥5,
∴m≥7或m≤-3.
故答案為:(-∞,-3]∪[7,+∞)
點(diǎn)評(píng):本題考查柯西不等式,考查恒成立問題,考查學(xué)生分析解決問題的能力,屬于中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)直線l:x=ty+
p
2
與拋物線y2=2px(p>0)交于不同兩點(diǎn)A,B點(diǎn),D為拋物線準(zhǔn)線上一點(diǎn),當(dāng)△ABD為正三角形時(shí),求D點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知|
a
|=2,|
b
|=5,
a
b
=-3,求|
a
+
b
|,|
a
-
b
|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
lim
n→∞
(2n+
an2-2n+1
bn+2
)=-1
,若直線l的方向向量為
d
=(a,b)
,則直線l的傾斜角為
 
(用反三角函數(shù)表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某學(xué)生在上學(xué)路上要經(jīng)過甲、乙兩個(gè)路口,假設(shè)這兩個(gè)路口是否遇到紅燈是相互獨(dú)立的,在甲路口遇到紅燈的概率是
1
3
,在乙路口遇到紅燈的概率是
1
2

(1)求這名學(xué)生在上學(xué)路上,沒有遇到紅燈的概率;
(2)求這名學(xué)生3次上學(xué)中,至少有2次上學(xué)遇到紅燈的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<
π
2
)的部分圖象如圖所示.
(1)求函數(shù)f(x)的解析式;
(2)求f(x)的單調(diào)遞增區(qū)間;
(3)如何由函數(shù)y=2sin2x的圖象通過適當(dāng)?shù)淖儞Q得到函數(shù)f(x)的圖象,寫出變換過程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

求函數(shù)y=1-sin
x
2
的單調(diào)增區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

判斷下列函數(shù)的奇偶性:
(1)f(x)=
2
sin2x;
(2)f(x)=sin(
3x
4
+
2
);
(3)f(x)=
1-cosx
+
cosx-1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知圓O:x2+y2=1和點(diǎn)M(1,4).
(1)過點(diǎn)M向圓O引切線,求切線的方程;
(2)求以點(diǎn)M為圓心,且被直線y=2x-8截得的弦長為8的圓M的方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案