【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率,點(diǎn)在橢圓上.

(1)求橢圓的方程;

(2)設(shè)過點(diǎn)且不與坐標(biāo)軸垂直的直線交橢圓、兩點(diǎn),線段的垂直平分線與軸交于點(diǎn),求點(diǎn)的橫坐標(biāo)的取值范圍;

(3)在第(2)問的條件下,求面積的最大值.

【答案】(1);(2);(3).

【解析】試題分析:

(1)由題意求得,則橢圓方程為.

(2)將直線方程與橢圓方程聯(lián)立,整理可得 ,則的取值范圍為.

(3)面積公式: ,求導(dǎo)討論可得面積的最大值為.

試題解析:(1)點(diǎn)在且橢圓上,

, ,

, , 橢圓的方程為.

(2)設(shè)直線的方程為,

代入,整理得.

直線過橢圓的右焦點(diǎn) 方程有兩個不等實(shí)根.

, 中點(diǎn),

,

垂直平分線的方程為.

,得 .

. 的取值范圍為.

(3),

,

,可得.

所以.

,所以.

所以的面積為.

設(shè),則.

可知在區(qū)間單調(diào)遞增,在區(qū)間單調(diào)遞減.

所以,當(dāng)時, 有最大值.

所以,當(dāng)時, 的面積有最大值.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】在如圖所示的直三棱柱中,,分別是,的中點(diǎn).

)求證:平面;

)若,,,求直線與平面所成角的正切值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】選修4-4:坐標(biāo)系與參數(shù)方程

以坐標(biāo)原點(diǎn)為極點(diǎn),以軸的非負(fù)半軸為極軸建立極坐標(biāo)系,已知曲線的參數(shù)方程為為參數(shù),),直線的參數(shù)方程為為參數(shù)).

(1)點(diǎn)在曲線上,且曲線在點(diǎn)處的切線與直線垂直,求點(diǎn)的極坐標(biāo);

(2)設(shè)直線與曲線有兩個不同的交點(diǎn),求直線的斜率的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】近年來我國電子商務(wù)行業(yè)迎來蓬勃發(fā)展的新機(jī)遇,2016年雙11期間,某平臺的銷售業(yè)績高達(dá)918億人民幣,與此同時,相關(guān)管理部門也推出了針對電商的商品和服務(wù)評價體系,現(xiàn)從評價系統(tǒng)中隨機(jī)選出200次成功的交易,并對其評價結(jié)果進(jìn)行統(tǒng)計,對商品的好評率為,對服務(wù)的好評率為,其中對商品和服務(wù)都做出好評的交易為80次.

在犯錯誤概率不超過( )的前提下,認(rèn)為商品好評與服務(wù)好評有關(guān).

0.15

0.10

0.05

0.025

0.010

0.005

0.001

2.072

2.706

3.841

5.024

6.635

7.879

10.828

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知為實(shí)數(shù),.

(1)若,求上的最大值和最小值;

(2)若上都遞減,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù), 為自然對數(shù)的底數(shù)).

(1)若函數(shù)的圖象在處的切線方程為,求, 的值;

(2)若時,函數(shù)內(nèi)是增函數(shù),求的取值范圍;

(3)當(dāng)時,設(shè)函數(shù)的圖象與函數(shù)的圖象交于點(diǎn)、,過線段的中點(diǎn)軸的垂線分別交、于點(diǎn)、,問是否存在點(diǎn),使處的切線與處的切線平行?若存在,求出的橫坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】學(xué)校藝術(shù)節(jié)對同一類的,,,四項(xiàng)參賽作品,只評一項(xiàng)一等獎,在評獎揭曉前,甲、乙、丙、丁四位同學(xué)對這四項(xiàng)參賽作品預(yù)測如下:

甲說:“是作品獲得一等獎”;

乙說:“作品獲得一等獎”;

丙說:“兩項(xiàng)作品未獲得一等獎”;

丁說:“是作品獲得一等獎”.

若這四位同學(xué)中只有兩位說的話是對的,則獲得一等獎的作品是__________

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知在△ABC中,角A,B,C所對的邊分別為a,b,c,且2S△ABC·.

(1)求角B的大小;

(2)若b=2,求a+c的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)函數(shù)

(1)求函數(shù)的單調(diào)區(qū)間;

(2)設(shè)是否存在極值,若存在,請求出極值;若不存在,請說明

理由;

(3)當(dāng)時.證明:

查看答案和解析>>

同步練習(xí)冊答案