選修4-1:幾何證明選講(本小題滿分10分)
如圖, 半徑分別為R,r(R>r>0)的兩圓內(nèi)切于點(diǎn)T,P是外圓上任意一點(diǎn),連PT交于點(diǎn)M,PN與內(nèi)圓相切,切點(diǎn)為N。求證:PN:PM為定值。
見(jiàn)解析。
本試題主要是考查了平面幾何性質(zhì)的運(yùn)用。三角形的相似,以及圓的公切線概念和性質(zhì)運(yùn)用,首先根據(jù)作兩圓的公切線TQ,連接OP,O1M,D得到線段比例關(guān)系,然后由由弦切角定理得到角想的呢過(guò),并利用平行關(guān)系,故可證明。
作兩圓的公切線,連結(jié),,

,所以.………3分
由弦切角定理知,,
,于是,
所以,………………6分
所以,所以, ……………………………………8分
所以為定值.  ………………………………………………10分
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(12分)從⊙O外一點(diǎn)P引圓的兩條切線PA,PB及一條割線PCD,A,B為切點(diǎn).

求證:=.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,在△ABC中,∠C=90°,BC=8,AB=10,O為BC上一點(diǎn),以O(shè)為圓心,OB為半徑作半圓與BC邊、AB邊分別交于點(diǎn)D、E,連接DE。

(1)若BD=6,求線段DE的長(zhǎng);
(2)過(guò)點(diǎn)E作半圓O的切線,交AC于點(diǎn)F,
證明:AF=EF。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

如圖,圓O1與圓O2相交于A、B兩點(diǎn),AB是圓O2的直徑,過(guò)A點(diǎn)作圓O1的切線交圓O2于點(diǎn)E,并與BO1的延長(zhǎng)線交于點(diǎn)P,PB分別與圓O1、圓O2交于C,D兩點(diǎn)。

求證:(Ⅰ)PA·PD=PE·PC;
(Ⅱ)AD=AE。

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:解答題

(本大題10分)
如圖,為⊙的直徑,切⊙于點(diǎn),交⊙于點(diǎn),點(diǎn)上.求證:是⊙的切線.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

如圖,E是平行四邊形ABCD的邊BC的延長(zhǎng)線上 的一點(diǎn),連結(jié)AE交CD于F,
則圖中共有相似三角形   (  )
A.1對(duì)B.2對(duì)C.3對(duì)D.4對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:單選題

AB是圓O的直徑,EF切圓O于C,AD⊥EF于D,AD=2,AB=6,則(     )
A.B.3C.D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題


查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源:不詳 題型:填空題

如圖,半圓的直徑AB=6,O為圓心,C為半圓上不同于A、B的任意一點(diǎn),若P為半徑OC上的動(dòng)點(diǎn),則的最小值為          .

查看答案和解析>>

同步練習(xí)冊(cè)答案