(2015•赤峰模擬)某茶樓有四類茶飲,假設(shè)為顧客準(zhǔn)備泡茶工具所需的時(shí)間互相獨(dú)立,且都是整數(shù)分鐘,經(jīng)統(tǒng)計(jì)以往為100位顧客準(zhǔn)備泡茶工具所需的時(shí)間(t),結(jié)果如下:
類別鐵觀音龍井金駿眉大紅袍
顧客數(shù)(人)20304010
時(shí)間t(分鐘/人)2346
注:服務(wù)員在準(zhǔn)備泡茶工具時(shí)的間隔時(shí)間忽略不計(jì),并將頻率視為概率.
(1)求服務(wù)員恰好在第6分鐘開(kāi)始準(zhǔn)備第三位顧客的泡茶工具的概率;
(2)用X表示至第4分鐘末已準(zhǔn)備好了工具的顧客人數(shù),求X的分布列及數(shù)學(xué)期望.
考點(diǎn):離散型隨機(jī)變量的期望與方差,幾何概型,離散型隨機(jī)變量及其分布列
專題:概率與統(tǒng)計(jì)
分析:(1)設(shè)Y表示服務(wù)員準(zhǔn)備工具所需的時(shí)間,用P表示對(duì)應(yīng)的概率,求出Y的分布列,由此能求出“服務(wù)員在第6分鐘開(kāi)始為第三位顧客準(zhǔn)備泡茶工具”的概率.
(2)分析得X的可能取值為0,1,2,求出相應(yīng)的概率能求出X的分布列與數(shù)學(xué)期望.
解答: 解:(1)設(shè)Y表示服務(wù)員準(zhǔn)備工具所需的時(shí)間,用P表示概率,得Y的分布列如下;
Y2346
P
1
5
3
10
2
5
1
10
A表示事件“服務(wù)員在6分鐘開(kāi)始為第三位顧客準(zhǔn)備泡茶工具”,則事件A對(duì)應(yīng)兩種情形:
①為第一位顧客準(zhǔn)備泡茶工具所需的時(shí)間為2分鐘,且為第二位所需的時(shí)間為3分鐘;
②為第一位顧客所需的時(shí)間為3分鐘,且為第一位顧客準(zhǔn)備所需的時(shí)間為2分鐘;
∴P(A)=P(Y=2)•P(Y=3)+P(Y=3)•P(Y=2)
=
1
5
×
3
10
+
3
10
×
1
5
=
3
25

(2)X的取值為0、1、2,
X=0時(shí)對(duì)應(yīng)為第一位顧客準(zhǔn)備所需的時(shí)間超過(guò)4分鐘,
∴P(X=0)=P(Y>4)=
1
10

X=1對(duì)應(yīng)為第一位顧客所需的時(shí)間2分鐘且為第二位顧客準(zhǔn)備所需的時(shí)間超過(guò)2分鐘,
或?yàn)榈谝晃活櫩蜏?zhǔn)備所需的時(shí)間3分鐘或?yàn)榈谝晃活櫩蜏?zhǔn)備所需的時(shí)間4分鐘,
∴P(X=1)=P(Y=2)•P(Y>2)+P(Y=3)+P( Y=4)
=
1
5
×
4
5
+
3
10
+
2
5
=
43
50
,
X=2對(duì)應(yīng)準(zhǔn)備兩位顧客泡茶工具的時(shí)間均為2分鐘,
∴P(X=2)=P(Y=2)P(Y=2)=
1
5
×
1
5
=
1
25
,
∴X的分布列為:
 X 1 2
 P 
1
10
 
43
50
 
1
25
∴X的數(shù)學(xué)期望是E(X)=0×
1
10
+1×
43
50
+2×
1
25
=
47
50
點(diǎn)評(píng):本題考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,是中檔題,解題時(shí)要認(rèn)真審題,在歷年高考中都是必考題型之一.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若log2(2m-3)=0,則elnm-1=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某企業(yè)為擴(kuò)大生產(chǎn)規(guī)模,今年年初新購(gòu)置了一條高性能的生產(chǎn)線,該生產(chǎn)線在使用過(guò)程中的設(shè)備維修、燃料和動(dòng)力等消耗的費(fèi)用(稱為設(shè)備的低劣化值)會(huì)逐年增加,第一年設(shè)備低劣化值是4萬(wàn)元,從第二年到第七年,每年設(shè)備低劣化值均比上年增加2萬(wàn)元,從第八年開(kāi)始,每年設(shè)備低劣化值比上年增加25%.
(1)設(shè)第n年該生產(chǎn)線設(shè)備低劣化值為an,求an的表達(dá)式;
(2)若該生產(chǎn)線前n年設(shè)備低劣化平均值為An,當(dāng)An達(dá)到或超過(guò)12萬(wàn)元時(shí),則當(dāng)年需要更新生產(chǎn)線,試判斷第幾年需要更新該生產(chǎn)線,并說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

定義域和值域均為[-a,a](常數(shù)a>0)的函數(shù)y=f(x)和y=g(x)的圖象如圖所示,給出下列四個(gè)命題:
(1)方程f[g(x)]=0有且僅有三個(gè)解;
(2)方程g[f(x)]=0有且僅有三個(gè)解;
(3)方程f[f(x)]=0有且僅有九個(gè)解;
(4)方程g[g(x)]=0有且僅有一個(gè)解.
那么,其中正確命題的個(gè)數(shù)是( 。
A、(1)(4)
B、(2)(3)
C、(1)(3)
D、(2)(4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某校100名學(xué)生期末考試數(shù)學(xué)成績(jī)的頻率分布直方圖如圖所示,其中成績(jī)分組區(qū)間是:[50,60),[60,70),[70,80),[80,90),[90,100].
(Ⅰ)求圖中a的值,并根據(jù)頻率分布直方圖,估計(jì)這100名學(xué)生數(shù)學(xué)成績(jī)的平均分;
(Ⅱ)若這100名學(xué)生數(shù)學(xué)成績(jī)?cè)谀承┓謹(jǐn)?shù)段的人數(shù)(x)與語(yǔ)文成績(jī)相應(yīng)分?jǐn)?shù)段的人數(shù)(y)之比如表所示,求語(yǔ)文成績(jī)?cè)赱50,90)之外的人數(shù).
分?jǐn)?shù)段[50,60)[60,70)[70,80)[80,90)
x:y5:41:13:55:1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

函數(shù)f(x)=Asin(ωx+φ)(A>0,ω>0,|φ|<π)的部分圖象如圖所示,圖象與x軸交點(diǎn)A及圖象最高點(diǎn)B的坐標(biāo)分別是A(
π
3
,0),B(
13π
12
,2),則f(-
π
2
)的值為( 。
A、-
3
2
B、-
3
C、
3
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)的離心率e=
3
2
,點(diǎn)P(
3
1
2
)
在橢圓C上.
(Ⅰ)求橢圓C的方程;
(Ⅱ)過(guò)點(diǎn)Q(2,0),作兩條互相垂直的動(dòng)直線QA、QB,分別交橢圓C于 A、B兩點(diǎn),求證:直線AB必過(guò)定點(diǎn),并求出該定點(diǎn)坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若數(shù)列{an}為等差數(shù)列,且am=x,an=y(m≠n,m,n∈N+),則am+n=
mx-ny
m-n
,現(xiàn)已知數(shù)列{bn}(bn>0,n∈N+)為等比數(shù)列,且bm=x,bn=y(m≠n,m,n∈N+)類比以上結(jié)論,可得什么結(jié)論?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,三個(gè)角A,B,C的對(duì)邊邊長(zhǎng)分別為a=3,b=4,c=6,則bccosA的值為
 

查看答案和解析>>

同步練習(xí)冊(cè)答案