18.空間四邊形ABCD中,AB=CD且AB與CD所成的角為30°,E、F分別為BC、AD的中點(diǎn),則EF與AB所成角的大小為15°或75°.

分析 取AC的中點(diǎn)G,連接GE與GF,則AB與CD(異面直線)所成角為30°,從而∠GEF=30°或∠GEF=150°,由此能求出EF與AB所成的角的大。

解答 解:取AC的中點(diǎn)G,
連接GE與GF,則AB與CD(異面直線)所成角為30°,
∵EG∥AB,F(xiàn)G∥CD,
∴∠EGF=30°或∠EGF=150°,
而AB=CD,
則GE=GF,
∴∠GFE=75°或∠GFE=15°.
∴EF與AB所成的角是75°或15°.
故答案為:15°或75°.

點(diǎn)評 本題考查異面直線所成角的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意空間思維能力的培養(yǎng).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.在下列命題中,正確的是( 。
A.若直線m、n都平行于平面α,則m∥n
B.設(shè)α-l-β是直二面角,若直線m⊥l,則m⊥β
C.若直線m、n在平面α內(nèi)的射影依次是一個(gè)點(diǎn)和一條直線,且m⊥n,則n在α內(nèi)或n與α平行
D.設(shè)m、n是異面直線,若m與平面α平行,則n與α相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知集合A={x|x2-3x+2=0,x∈R},B={x|0<x<5,x∈N},則滿足條件A⊆C⊆B的集合C 的個(gè)數(shù)為4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知三棱錐S-ABC的所有頂點(diǎn)都在球O的球面上,△ABC是邊長為1的正三角形,SC為球O的直徑,且SC=2;則棱錐VO-ABC:VO-SAB=( 。
A.1:1B.1:2C.2:1D.1:3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.給出下列命題:
①函數(shù)f(x)=4cos(2x+$\frac{π}{3}$)的一個(gè)對稱中心為(-$\frac{5π}{12}$,0);
②若α,β為第一象限角,且α>β,則tanα>tanβ;
③若|$\overrightarrow{a}$+$\overrightarrow$|=|$\overrightarrow{a}$|-|$\overrightarrow$|,則存在實(shí)數(shù)λ,使得$\overrightarrow$=λ$\overrightarrow{a}$;
④在△ABC中,內(nèi)角A,B,C所對的邊分別為a,b,c,若a=40,b=20,B=25°,則△ABC必有兩解.
⑤函數(shù)y=sin2x的圖象向左平移$\frac{π}{4}$個(gè)單位長度,得到y(tǒng)=sin(2x+$\frac{π}{4}$)的圖象.
其中正確命題的序號是①③④ (把你認(rèn)為正確的序號都填上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}y≥0\\ x-y≥0\\ 2x-y-2≥0\end{array}\right.$,則使|m-1|>$\frac{y-1}{x+1}$恒成立的m的取值范圍是(  )
A.[0,2]B.(-∞,0]∪[2,+∞)C.[2,+∞)D.[-$\frac{1}{2}$,1)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知實(shí)數(shù)x、y滿足條件:$\left\{\begin{array}{l}x-y-1≤0\\ 2x+y-4≥0\\ y≤2\end{array}\right.$,則$\frac{y}{x}$的最小值為$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.已知f(x)=ax3+bsinx+100tanx+1,且f(1)=5,f(-1)的值為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.直線x+my+m=0,將x2-6x+y2+4y+5=0分成1:2兩段弧,則m為( 。
A.4或-4B.3或-5C.2或-6D.1或-7

查看答案和解析>>

同步練習(xí)冊答案