分析 (1)由EA⊥平面ABC,可得EA⊥BM,又BM⊥AC,由線面垂直的判定得BM⊥平面ACFE,則BM⊥EM.再由AC是圓O的直徑得∠ABC=90°.然后求解直角三角形可得EM⊥MF.從而得到EM⊥平面MBF,則有EM⊥BF;
(2)由(1)可知BM⊥平面MFE,且$BM=\sqrt{3}$,而VE-BMF=VB-MEF,利用等積法求得三棱錐 E-BMF的體積.
解答 (1)證明:∵EA⊥平面ABC,BM?平面ABC,∴EA⊥BM.
又∵BM⊥AC,EA∩AC=A,∴BM⊥平面ACFE,
而EM?平面ACFE,∴BM⊥EM.
∵AC是圓O的直徑,∴∠ABC=90°.
又∵∠BAC=30°,AC=4,∴$AB=2\sqrt{3}$,BC=2,AM=3,CM=1.
∵EA⊥平面ABC,F(xiàn)C∥EA,F(xiàn)C=1,∴FC⊥平面ABCD.
∴△EAM與△FCM都是等腰直角三角形.
∴∠EMA=∠FMC=45°,則∠EMF=90°,即EM⊥MF.
∵M(jìn)F∩BM=M,∴EM⊥平面MBF,
而BF?平面MBF,∴EM⊥BF;
(2)解:由(1)可知BM⊥平面MFE,且$BM=\sqrt{3}$,而VE-BMF=VB-MEF,
又由(1)可知,AE=AM=3,∴∠AME=45°,F(xiàn)C=CM=1,
∴∠CMF=45°,則∠EMF=90°,
則$ME=3\sqrt{2}$,$MF=\sqrt{2}$,
∴${S_{△MEF}}=\frac{1}{2}×3\sqrt{2}×\sqrt{2}=3$,
∴${V_{E-BMF}}=\frac{1}{3}×3×\sqrt{3}=\sqrt{3}$.
點(diǎn)評(píng) 本題考查空間中直線與直線的位置關(guān)系,考查了線面垂直的判定,考查空間想象能力和思維能力,訓(xùn)練了利用等積法求多面體的體積,是中檔題.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{6}$ | B. | $\frac{1}{3}$ | C. | $\frac{5}{6}$ | D. | $\frac{2}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 0 | B. | $\sqrt{2}$ | C. | 2 | D. | 1 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (2,2) | B. | (2,2)或(-2,-2) | C. | (-2,-2) | D. | (2,2)或(2,-2) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com