用數(shù)學(xué)歸納法證明:當(dāng)x>-1,n∈N+時(shí),(1+x)n≥1+nx.

解:因?yàn)椋?+x)n≥1+nx為關(guān)于n的不等式,x為參數(shù),以下用數(shù)學(xué)歸納法證明:
(。┊(dāng)n=1時(shí),原不等式成立;
當(dāng)n=2時(shí),左邊=1+2x+x2,右邊=1+2x,
因?yàn)閤2≥0,所以左邊≥右邊,原不等式成立;
(ⅱ)假設(shè)當(dāng)n=k時(shí),不等式成立,即(1+x)k≥1+kx,
則當(dāng)n=k+1時(shí),
∵x>-1,
∴1+x>0,于是在不等式(1+x)k≥1+kx兩邊同乘以1+x得
(1+x)k•(1+x)≥(1+kx)•(1+x)=1+(k+1)x+kx2≥1+(k+1)x,
所以(1+x)k+1≥1+(k+1)x.即當(dāng)n=k+1時(shí),不等式也成立.
綜合(。áⅲ┲,對(duì)一切正整數(shù)n,不等式都成立.
分析:要證明當(dāng)x>-1時(shí),(1+x)n≥1+nx,先證明n=1時(shí),(1+x)n≥1+nx成立,再假設(shè)n=k時(shí),(1+x)n≥1+nx成立,進(jìn)而證明出n=k+1時(shí),(1+x)n≥1+nx也成立,即可得到對(duì)于任意正整數(shù)n:當(dāng)x>-1時(shí),(1+x)n≥1+nx.
點(diǎn)評(píng):數(shù)學(xué)歸納法常常用來證明一個(gè)與自然數(shù)集N相關(guān)的性質(zhì),其步驟為:設(shè)P(n)是關(guān)于自然數(shù)n的命題,若1)(奠基) P(n)在n=1時(shí)成立;2)(歸納) 在P(k)(k為任意自然數(shù))成立的假設(shè)下可以推出P(k+1)成立,則P(n)對(duì)一切自然數(shù)n都成立.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知m,n為正整數(shù).
(Ⅰ)用數(shù)學(xué)歸納法證明:當(dāng)x>-1時(shí),(1+x)m≥1+mx;
(Ⅱ)對(duì)于n≥6,已知(1-
1
n+3
)n
1
2
,求證(1-
m
n+3
)n<(
1
2
)m
,m=1,2…,n;
(Ⅲ)求出滿足等式3n+4n+5n+…+(n+2)n=(n+3)n的所有正整數(shù)n.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知:函數(shù)f(x)=-
1
6
x3+
1
2
x2+x
,x∈R.
(Ⅰ)求證:函數(shù)f(x)的圖象關(guān)于點(diǎn)A(1,
4
3
)
中心對(duì)稱,并求f(-2007)+f(-2006)+…+f(0)+f(1)+…+f(2009)的值.
(Ⅱ)設(shè)g(x)=f′(x),an+1=g(an),n∈N+,且1<a1<2,求證:
(。┱(qǐng)用數(shù)學(xué)歸納法證明:當(dāng)n≥2時(shí),1<an
3
2
;
(ⅱ)|a1-
2
|+|a2-
2
|+…+|an-
2
|<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(理科做)設(shè)f(n)=1+
1
2
+
1
3
+…+
1
n
,用數(shù)學(xué)歸納法證明:當(dāng)n≥2,n∈N*時(shí),n+f(1)+f(2)+…+f(n-1)=nf(n).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明:當(dāng)n為正奇數(shù)時(shí),xn+yn能被x+y整除,第二步的假設(shè)應(yīng)寫成
假設(shè)n=2k-1,k∈N*時(shí)命題正確,即當(dāng)n=2k-1,k∈N*時(shí),x2k-1+y2k-1能被x+y整除
假設(shè)n=2k-1,k∈N*時(shí)命題正確,即當(dāng)n=2k-1,k∈N*時(shí),x2k-1+y2k-1能被x+y整除

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

用數(shù)學(xué)歸納法證明:當(dāng)n為正奇數(shù)時(shí),xn+yn能被x+y整除,第二步的假設(shè)應(yīng)寫成假設(shè)n=
2k-1
2k-1
,k∈N*時(shí)命題正確,再證明n=
2k+1
2k+1
,k∈N*時(shí)命題正確.

查看答案和解析>>

同步練習(xí)冊(cè)答案