分析 (1)分a=0與a≠0兩種情況討論;
(2)考慮A=∅,結(jié)合(1),即可得出結(jié)論.
解答 解:(1)當(dāng)a=0時(shí),原方程化為2x+1=0解得x=-$\frac{1}{2}$;
當(dāng)a≠0時(shí),只需△=4-4a=0,即a=1,得x=-1,
綜上所述,當(dāng)a=1時(shí),A={-1};當(dāng)a=0時(shí),A={-$\frac{1}{2}$}.…(4分)
(2)若A=∅,只需△=4-4a<0,即a>1,
結(jié)合(1)可知,A中至多有一個(gè)元素時(shí),a的取值范圍是 {0}∪[1,+∞) …(8分)
點(diǎn)評(píng) 本題以集合為載體,考查了一元二次方程的解的個(gè)數(shù)的判斷問(wèn)題,要注意對(duì)最高次數(shù)項(xiàng)是否為零的討論.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (0,$\frac{1}{2}$] | B. | (-∞,$\frac{1}{2}$] | C. | (-∞,2] | D. | [$\frac{1}{2}$,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 一 | B. | 二 | C. | 三 | D. | 四 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 34 | B. | 43 | C. | 24 | D. | 12 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com