精英家教網 > 高中數學 > 題目詳情
已知函數f(x)=ex+2x,若f′(x)≥a恒成立,則實數a的取值范圍是________.
(-∞,2]
∵f'(x)=ex+2,又ex>0恒成立,∴f'(x)>2,
由題意,得2≥a,即a≤2.
練習冊系列答案
相關習題

科目:高中數學 來源:不詳 題型:解答題

設函數
(1)對于任意實數,恒成立,求的最大值;
(2)若方程有且僅有一個實根,求的取值范圍.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知函數f(x)=lnx,g(x)=ax2+bx(a≠0),設函數f(x)的圖象C1與函數g(x)的圖象C2交于兩點P、Q,過線段PQ的中點R作x軸垂線分別交C1、C2于點M、N,問是否存在點R,使C1在點M處的切線與C2在點N處的切線互相平行?若存在,求出點R的橫坐標;若不存在,請說明理由.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

設定義在(0,+∞)上的函數f(x)=axb(a>0).
(1)求f(x)的最小值;
(2)若曲線yf(x)在點(1,f(1))處的切線方程為yx,求a,b的值.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

設函數f(x)=,g(x)=,對任意x1,x2∈(0,+∞),不等式恒成立,則正數k的取值范圍是      .

查看答案和解析>>

科目:高中數學 來源:不詳 題型:解答題

已知曲線y=x3+,
(1)求曲線過點P(2,4)的切線方程.
(2)求曲線的斜率為4的切線方程.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

已知函數、、為常數),當時取極大值,當時取極小值,則的取值范圍是(  )
A.B.C.D.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:填空題

已知函數f(x)=-xln x+ax在(0,e)上是增函數,函數g(x)=|ex-a|+,當x∈[0,ln 3]時,函數g(x)的最大值M與最小值m的差為,則a=________.

查看答案和解析>>

科目:高中數學 來源:不詳 題型:單選題

f (x)=ax3+3x2+2,若f′(-1)=4,則a的值等于(  )
A.B.C.D.

查看答案和解析>>

同步練習冊答案