如圖,是以為直徑的半圓上的一點,過的直線交直線,交過A點的切線于,.

(Ⅰ)求證:是圓的切線;
(Ⅱ)如果,求.
(Ⅰ)見解析;(Ⅱ) .

試題分析:(Ⅰ) 連接,根據(jù)直徑所對的圓心角是直角可知,,結(jié)合已知條件“”得,,所以的中垂線,由中垂線的性質(zhì)可得到,,,把角轉(zhuǎn)化為,即可得到,則結(jié)論可證;(Ⅱ)先根據(jù)兩個對應(yīng)角相等得到,由相似三角形對應(yīng)線段成比例求出線段的值,進一步求出的值,由平行線分線段成比例可得到的值,從而解出.
試題解析:(Ⅰ)連接,

是直徑,則.
得,,
的中垂線,
所以,,
所以,
,即是圓的切線.               5分
(Ⅱ)因為,
所以,,
則有,
所以,那么,
所以,
所以,
所以,
解得.              10分
練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源:不詳 題型:解答題

(1)求直線關(guān)于直線,對稱的直線方程;
(2)已知實數(shù)滿足,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖,AB是圓O的直徑,C,D是圓O上兩點,AC與BD相交于點E,GC,GD是圓O的切線,點F在DG的延長線上,且.求證:(1)D、E、C、F四點共圓;(2).

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

如圖所示,自⊙外一點引切線與⊙切于點,的中點,過引割線交⊙兩點. 求證:

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

已知點P(3,4)和圓C:(x2)2+y2=4,A,B是圓C上兩個動點,且|AB|=,則(O為坐標原點)的取值范圍是(   )
A.[3,9]B.[1,11]C.[6,18]D.[2,22]

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

如圖,⊙的割線交⊙兩點,割線經(jīng)過圓心,已知,,,則⊙的半徑是______.

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:填空題

已知⊙O1和⊙O2交于點C和D,⊙O1上的點P處的切線交⊙O2于A、B點,交直線CD于點E,M是⊙O2上的一點,若PE=2,EA=1,,那么⊙O2的半徑為      .

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:單選題

的圓心坐標是(  )
A.(2,3) B.(-2,3)C.(-2,-3)D.(2,-3)

查看答案和解析>>

科目:高中數(shù)學 來源:不詳 題型:解答題

已知圓與y軸相切,圓心在直線x-3y=0,且這個圓經(jīng)過點A(6,1),求該圓的方程.

查看答案和解析>>

同步練習冊答案