如圖,設(shè)P是圓x2+y2=25上的動(dòng)點(diǎn),點(diǎn)D是P在x軸上的投影,M為PD上一點(diǎn),且|MD|=
4
5
|PD|

(1)當(dāng)P在圓上運(yùn)動(dòng)時(shí),求點(diǎn)M的軌跡C的方程;
(2)若直線y=ax-5與曲線C交于A,B兩點(diǎn),且OA⊥OB,求a的值.
考點(diǎn):直線與圓錐曲線的綜合問題
專題:圓錐曲線中的最值與范圍問題
分析:(1)設(shè)M的坐標(biāo)為(x,y),P的坐標(biāo)為(xP,yP),由已知得
xP=x
yP=
5
4
y.
由此能求出C的方程.
(2)設(shè)A(x1,y1),B(x2,y2),由
16x2+25y2=400
y=ax-5
,得(16+25a2)x2-250ax+225=0,由此利用韋達(dá)定理和根的判別式能求出a的值.
解答: 解:(1)設(shè)M的坐標(biāo)為(x,y),P的坐標(biāo)為(xP,yP),
∵P是圓x2+y2=25上的動(dòng)點(diǎn),點(diǎn)D是P在x軸上的投影,M為PD上一點(diǎn),且|MD|=
4
5
|PD|
,
xP=x
yP=
5
4
y.

∵P在圓上,∴x2+(
5
4
y)2=25
,即C的方程為
x2
25
+
y2
16
=1
.…(4分)
(2)設(shè)A(x1,y1),B(x2,y2),
16x2+25y2=400
y=ax-5
,得(16+25a2)x2-250ax+225=0,
x1+x2=
250a
16+25a2
,x1x2=
225
16+25a2
①…(8分)
OA
OB
=0
,得x1x2+y1y2=0,
即(1+a2)x1x2-5a(x1+x2)+25=0②
將①代入②式得
225(1+a2)-1250a2+25(16+25a2)
16+25a2
=0

解得a=
5
4
,經(jīng)驗(yàn)滿足△>0,
a=
5
4
.…(12分)
點(diǎn)評(píng):本題考查點(diǎn)的軌跡方程的求法,考查實(shí)數(shù)值的求法,解題時(shí)要認(rèn)真審題,注意韋達(dá)定理和根的判別式的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直角坐標(biāo)平面上點(diǎn)Q(2,0)和圓O:x2+y2=1,動(dòng)點(diǎn)M到圓O的切線長(zhǎng)與|MQ|的比等于常數(shù)λ(λ>0),(1)求動(dòng)點(diǎn)M的軌跡方程,并說明它表示什么曲線?
(2)當(dāng)λ=
2
時(shí)的曲線記為C,在直線y=2x+1上有一點(diǎn)P,過P且垂直于直線4x+3y-3=0的直線被曲線C所截的弦長(zhǎng)不小于2
3
,求P點(diǎn)橫坐標(biāo)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,在正方形OABC中,O為坐標(biāo)原點(diǎn),點(diǎn)A的坐標(biāo)為(10,0),點(diǎn)C的坐標(biāo)為(0,10).分別將線段OA和AB十等分,分點(diǎn)分別記為A1,A2…A9和B1,B2…B9,連結(jié)OBi,過Ai做x軸的垂線與OBi交于點(diǎn)Pi(i∈N*,1≤i≤9).
(1)求證:點(diǎn)Pi(i∈N*,1≤i≤9)都在同一條拋物線上,并求該拋物線E的方程;
(2)過點(diǎn)C做直線與拋物線E交于不同的兩點(diǎn)M,N,若△OCM與△OCN的面積比為4:1,求直線的方程.
(3)傾斜角為a的直線經(jīng)過拋物線E的焦點(diǎn)F,且與拋物線交于A、B兩點(diǎn),若α為銳角,作線段AB的垂直平分線m交y軸于點(diǎn)P,證明|FP|+|FP|cos2α為定值,并求此定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

從數(shù)列{an}中抽出一些項(xiàng),依原來(lái)的順序組成的新數(shù)列叫數(shù)列{an}的一個(gè)子列.
(Ⅰ)寫出數(shù)列{3n-1}的一個(gè)是等比數(shù)列的子列;
(Ⅱ)設(shè){an}是無(wú)窮等比數(shù)列,首項(xiàng)a1=1,公比為q.求證:當(dāng)0<q<1時(shí),數(shù)列{an}不存在是無(wú)窮等差數(shù)列的子列.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

求函數(shù)f(x)=x2-
1
x2
+2x+1的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知變量x,y滿足約束條件
x+y≥1
y≤3
x-y≤1
,若z=kx+y的最大值為5,則實(shí)數(shù)k=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知某二次函數(shù)圖象的頂點(diǎn)為A(2,-18),它與x軸兩個(gè)交點(diǎn)之間的距離為6,則該二次函數(shù)的解析式為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}中,a3+a5=8,a1a5=4,則
a13
a9
=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知等比數(shù)列{an}中,a2+a3=1,a4+a5=2,則a6+a7等于( 。
A、2
B、2
2
C、4
D、4
2

查看答案和解析>>

同步練習(xí)冊(cè)答案