19.若某空間幾何體的三視圖如圖所示,根據(jù)圖中數(shù)據(jù),可得該幾何體的表面積是(  )
A.4+20πB.16+12πC.16+16πD.16+20π

分析 判斷幾何體的形狀,利用三視圖的數(shù)據(jù),求解幾何體的表面積即可.

解答 解:由三視圖可知,該幾何體的上半部分是半徑為1的球,表面積為4π;
下半部分是底面半徑為2,高為4的圓柱的一半,
表面積為$4×4+2×\frac{1}{2}π×{2^2}+\frac{1}{2}×2π×2×4=16+12π$.
所以該幾何體的表面積為16+16π,
故選:C.

點(diǎn)評 本題考查三視圖與幾何體的關(guān)系,幾何體的表面積的求法,考查空間想象能力以及計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.已知△ABC的面積為S,三內(nèi)角A,B,C的對邊分別為a,b,c.若4S+a2=b2+c2,則sinC-cos(B+$\frac{π}{4}$)取最大值時C=$\frac{π}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的右頂點(diǎn)為A,上頂點(diǎn)為B,且$|{AB}|=\sqrt{3}$,橢圓的離心率為$\frac{{\sqrt{2}}}{2}$.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)若直線l:y=kx+m與橢圓E相交于C,D兩個不同的點(diǎn),且坐標(biāo)原點(diǎn)O到直線l的距離為$\frac{{\sqrt{6}}}{3}$,求證:$\overline{OC}•\overline{OD}=0$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知函數(shù)f(x)=|x-2|-|x+1|
(1)解不等式f(x)<1;
(2)若$?x∈R,f(x)≥{log_{\frac{1}{3}}}(m-3)$,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的兩焦點(diǎn)為F1,F(xiàn)2,離心率為$\frac{{\sqrt{2}}}{2}$,直線l與橢圓相交于A(x1,y1),B(x2,y2)兩點(diǎn),且滿足$|A{F_1}|+|A{F_2}|=4\sqrt{2}$,O為坐標(biāo)原點(diǎn).
(1)求橢圓的方程;
(2)設(shè)向量$\overrightarrow m=(\frac{x_1},\frac{y_1}{a})$,$\overrightarrow n=(\frac{x_2},\frac{y_2}{a})$,且$\overrightarrow m•\overrightarrow n=0$,試證明△AOB的面積為定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.某商品每天以每瓶5元的價格從奶廠購進(jìn)若干瓶24小時新鮮牛奶,然后以每瓶8元的價格出售,如果當(dāng)天該牛奶賣不完,則剩下的牛奶就不再出售,由奶廠以每瓶2元的價格回收處理.
(1)若商品一天購進(jìn)20瓶牛奶,求當(dāng)天的利潤y(單位:元)關(guān)于當(dāng)天需求量n(單位:瓶,n∈N)的函數(shù)解析式;
(2)商店記錄了50天該牛奶的日需求量(單位:瓶),整理得如表:
日需求量n(瓶)17181920212223
頻數(shù)558121064
以50天記錄的各需求量的頻率作為各需求量發(fā)生的概率,假設(shè)商店一天購進(jìn)20瓶牛奶,隨機(jī)變量X表示當(dāng)天的利潤(單位:元),求隨機(jī)變量X的分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知k>0,x,y滿足約束條件$\left\{{\begin{array}{l}{x≥2}\\{x+y≤4}\\{y≥k(x-4)}\end{array}}\right.$,若z=x-y的最大值為4,則k的取值范圍是( 。
A.(0,1)B.(0,1]C.(1,+∞)D.[1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.調(diào)查某種藥是否對心臟病有治療作用時,得k≈4.56,則認(rèn)為此藥物與心臟病之間( 。
A.有95%的把握認(rèn)為兩者有關(guān)
B.約有95%的心臟病患者使用藥物有作用
C.有99%的把握認(rèn)為兩者有關(guān)
D.約有99%的心臟病患者使用藥物有作用

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.在等比數(shù)列{an}中,a2和a18為方程x2+15x+16=0的兩根,則a3a10a17等于( 。
A.-256B.64C.-64D.256

查看答案和解析>>

同步練習(xí)冊答案