16.設(shè)a=22.5,b=log${\;}_{\frac{1}{2}}$2.5,c=($\frac{1}{2}$)2.5,則a,b,c之間的大小關(guān)系是( 。
A.c>b>aB.c>a>bC.a>c>bD.b>a>c

分析 利用指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的單調(diào)性即可得出.

解答 解:∵a=22.5>1,b=log${\;}_{\frac{1}{2}}$2.5<0,c=($\frac{1}{2}$)2.5∈(0,1),
∴a>c>b,
故選:C.

點(diǎn)評(píng) 本題考查了指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知f(x)是定義在R上奇函數(shù),又f(2)=0,若x>0時(shí),xf′(x)+f(x)>0,則不等式xf(x)>0的解集是(-∞,-2)∪(2,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知直線l:ax+y-4=0過點(diǎn)(-1,2),則直線l的斜率為( 。
A.-3B.3C.-2D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.在△ABC中,已知點(diǎn)D為AB邊的中點(diǎn),點(diǎn)N在線段CD上,且$\overrightarrow{CN}$=2$\overrightarrow{ND}$,若$\overrightarrow{AN}$=$\frac{1}{3}$$\overrightarrow{AC}$+λ$\overrightarrow{AB}$,則λ=(  )
A.$\frac{1}{3}$B.-$\frac{1}{3}$C.$\frac{2}{3}$D.-$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

11.將函數(shù)f(x)=$\sqrt{3}$cos(2x+$\frac{π}{3}$)-1的圖象向左平移$\frac{π}{3}$個(gè)單位長度,再向上平移1個(gè)單位長度,得到函數(shù)g(x)的圖象,則函數(shù)g(x)具有性質(zhì)②③④.(填入所有正確性質(zhì)的序號(hào))
①最大值為$\sqrt{3}$,圖象關(guān)于直線x=-$\frac{π}{3}$對(duì)稱;
②圖象關(guān)于y軸對(duì)稱;
③最小正周期為π;
④圖象關(guān)于點(diǎn)($\frac{π}{4}$,0)對(duì)稱;
⑤在(0,$\frac{π}{3}$)上單調(diào)遞減.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知集合A={x|x>1},B={x|-1<x<2},則A∩B=( 。
A.{x|x>-1}B.{x|-1<x≤1}C.{x|-1<x<2}D.{x|1<x<2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

8.選擇合適的抽樣方法抽樣,寫出抽樣過程.
(1)有30個(gè)籃球,其中甲廠生產(chǎn)的有21個(gè),乙廠生產(chǎn)的有9個(gè),抽取10個(gè)入樣.
(2)有甲廠生產(chǎn)的30個(gè)籃球,其中一箱21個(gè),另一箱9個(gè),抽取3個(gè)入樣.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

5.已知函數(shù)$f(x)=\left\{\begin{array}{l}{log_{\frac{1}{2}}}x,x>1\\ \frac{1}{{{2^{x-1}}}},x≤1\end{array}\right.$,則f(f(4))=(  )
A.-3B.$\frac{1}{8}$C.3D.8

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若直線l:y=$\sqrt{3}$x與圓C:x2-4x+y2=0相交于A,B兩點(diǎn),則弦長|AB|=( 。
A.$\frac{\sqrt{2}}{2}$B.$\sqrt{2}$C.2D.2$\sqrt{2}$

查看答案和解析>>

同步練習(xí)冊答案