分析 (1)利用兩角和與差的余弦函數(shù)公式化簡,求出cos(B+C)的值,即可求出A的度數(shù);
(2)利用余弦定理和完全平方公式變形,將a與b+c的值代入求出bc的值,
再利用三角形面積公式求出△ABC的面積.
解答 解:(1)△ABC中,cosBcosC-sinBsinC=$\frac{1}{2}$,
∴cos(B+C)=$\frac{1}{2}$,
又∵0<B+C<π,
∴B+C=$\frac{π}{3}$,
又A+B+C=π,
∴A=$\frac{2π}{3}$;
(2)由余弦定理a2=b2+c2-2bc•cosA,
得(2$\sqrt{3}$)2=(b+c)2-2bc-2bc•cos$\frac{2π}{3}$,
把b+c=4代入得:12=16-2bc+bc,
解得bc=4,
則△ABC的面積為
S=$\frac{1}{2}$bc•sinA=$\frac{1}{2}$×4×$\frac{\sqrt{3}}{2}$=$\sqrt{3}$.
點評 本題考查了余弦定理,三角形面積公式,以及特殊角的三角函數(shù)值,熟練掌握余弦定理是解題的關(guān)鍵.
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{1}{16}$ | B. | $-\frac{1}{16}$ | C. | -4 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | m+1 | B. | 2 | C. | $\frac{63}{16}$ | D. | $\frac{65}{16}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{\frac{S}{3π}}$ | B. | $\sqrt{3πS}$ | C. | $\frac{{\sqrt{6πS}}}{6π}$ | D. | $3π\(zhòng)sqrt{6πS}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com