曲線f(x)=x2+alnx在點(diǎn)(1,f(1))處的切線斜率為4,則a=
 
考點(diǎn):利用導(dǎo)數(shù)研究曲線上某點(diǎn)切線方程
專題:導(dǎo)數(shù)的概念及應(yīng)用
分析:由求導(dǎo)公式求導(dǎo)函數(shù),由題意得求出f′(1)=4,代入求出a的值.
解答: 解:由題意得f(x)=x2+alnx,則f′(x)=2x+
a
x
,
因?yàn)樵邳c(diǎn)(1,f(1))處的切線斜率為4,
所以f′(1)=4,即2+a=4,解得a=2,
故答案為:2.
點(diǎn)評(píng):本題考查導(dǎo)數(shù)的幾何意義,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)f(x)是定義在[-1,1]上奇函數(shù),且對(duì)任意的a,b∈[-1,1],當(dāng)a+b≠0時(shí),都有
f(a)+f(b)
a+b
<0,則不等式f(2x-
1
2
)<f(x-
1
4
)的解集為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某同學(xué)進(jìn)入高二前,高一年的四次期中、期末測(cè)試的數(shù)學(xué)成績(jī)的莖葉圖如圖所示,則該同學(xué)數(shù)學(xué)成績(jī)的平均數(shù)是( 。
A、125B、126
C、127D、128

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

正方形ABCD被對(duì)角線BD和以A為圓心,AB為半徑的圓弧
DB
分成三部分,繞AD旋轉(zhuǎn),所得旋轉(zhuǎn)體的體積V1、V2、V3之比是( 。
A、2:1:1
B、1:2:1
C、1:1:1
D、2:2:1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若函數(shù)f(x)=
1
2
x2-x+
3
2
,x∈[1,b]
的值域也為[1,b],則b的值為(  )
A、1或3
B、1或
3
2
C、
3
2
D、3

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在如圖所示的幾何體中,四邊形ABCD是等腰梯形,AB∥CD,∠DAB=60°,EC⊥平面ABCD,CB=CD=CE.
(Ⅰ)求證:AC⊥平面CBE;
(Ⅱ)求二面角E-BD-C的余弦值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

圓x2+y2=2按向量
u
=(2,1)平移后與直線x+y+m=0相切,則m=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x3-x-3的零點(diǎn)所在區(qū)間是( 。
A、[-1,0]
B、[0,1]
C、[1,2]
D、[2,3]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)y=x4-4x+3在區(qū)間[-1,2]上的最大值為( 。
A、11B、8C、12D、0

查看答案和解析>>

同步練習(xí)冊(cè)答案