在同一平面的直角坐標(biāo)系中,直線x-2y=2經(jīng)過伸縮變換
x′=x
y′=4y
后,得到的直線方程為( 。
分析:把伸縮變換的式子變?yōu)橛脁,y表示x,y,再代入原方程即可求出.
解答:解:由
x′=x
y′=4y
x=x
y=
y
4
,代入直線x-2y=2得x-2×
y
4
=2
,即2x-y=4.
故選B.
點(diǎn)評(píng):本題考查了伸縮變換,理解其變形方法是解決問題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an},{bn}是兩個(gè)數(shù)列,M(1,2),An(2,an),Bn(
n-1
n
,
2
n
)
為直角坐標(biāo)平面上的點(diǎn).對(duì)n∈N*,若三點(diǎn)M,An,B共線,
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若數(shù)列{bn}滿足:log2cn=
a1b1+a2b2+…+anbn
a1+a2+…+an
,其中{cn}是第三項(xiàng)為8,公比為4的等比數(shù)列.求證:點(diǎn)列P1(1,b1),P2(2,b2),…Pn(n,bn)在同一條直線上;
(3)記數(shù)列{an}、{bn}的前m項(xiàng)和分別為Am和Bm,對(duì)任意自然數(shù)n,是否總存在與n相關(guān)的自然數(shù)m,使得anBm=bnAm?若存在,求出m與n的關(guān)系,若不存在,請(qǐng)說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

(2013•徐匯區(qū)一模)對(duì)于直角坐標(biāo)平面xOy內(nèi)的點(diǎn)A(x,y)(不是原點(diǎn)),A的“對(duì)偶點(diǎn)”B是指:滿足|OA||OB|=1且在射線OA上的那個(gè)點(diǎn).若P,Q,R,S是在同一直線上的四個(gè)不同的點(diǎn)(都不是原點(diǎn)),則它們的“對(duì)偶點(diǎn)”P′,Q′,R′,S′( 。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè){an}{bn}是兩個(gè)數(shù)列,點(diǎn)M(1,2),An(2,an)Bn(
n-1
n
,
2
n
)
為直角坐標(biāo)平面上的點(diǎn).
(Ⅰ)對(duì)n∈N*,若三點(diǎn)M,An,Bn共線,求數(shù)列{an}的通項(xiàng)公式;
(Ⅱ)若數(shù)列{bn}滿足:log2cn=
a1b1+a2b2+…+anbn
a1+a2+…+an
,其中{cn}是第三項(xiàng)為8,公比為4的等比數(shù)列.求證:點(diǎn)列P1(1,b1),P2(2,b2),…Pn(n,bn)在同一條直線上,并求出此直線的方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2014屆黑龍江省高二上學(xué)期期末理科數(shù)學(xué)試卷(解析版) 題型:選擇題

下列命題中真命題的是(  )

A.在同一平面內(nèi),動(dòng)點(diǎn)到兩定點(diǎn)的距離之差(大于兩定點(diǎn)間的距離)為常數(shù)的點(diǎn)的軌跡是雙曲線

B.在平面內(nèi),F(xiàn)1,F(xiàn)2是定點(diǎn),|F1F2|=6,動(dòng)點(diǎn)M滿足|MF1|+|MF2|=6,則點(diǎn)M的軌跡是橢圓

C.“若-3<m<5則方程是橢圓”

D.在直角坐標(biāo)平面內(nèi),到點(diǎn)和直線距離相等的點(diǎn)的軌跡是直線

 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2012-2013學(xué)年上海市徐匯區(qū)高三上學(xué)期期末考試?yán)砜茢?shù)學(xué)試卷(解析版) 題型:選擇題

對(duì)于直角坐標(biāo)平面內(nèi)的點(diǎn)(不是原點(diǎn)),的“對(duì)偶點(diǎn)”是指:滿足且在射線上的那個(gè)點(diǎn). 若是在同一直線上的四個(gè)不同的點(diǎn)(都不是原點(diǎn)),則它們的“對(duì)偶點(diǎn)”   (     )

A.一定共線                             B.一定共圓

C.要么共線,要么共圓                    D.既不共線,也不共圓

 

查看答案和解析>>

同步練習(xí)冊(cè)答案