A. | (0,4e2] | B. | (0,8e2] | C. | [4e2,+∞) | D. | [8e2,+∞) |
分析 設(shè)公切線與f(x)、g(x)的切點(diǎn)坐標(biāo),由導(dǎo)數(shù)幾何意義、斜率公式列出方程化簡,分離出a后構(gòu)造函數(shù),利用導(dǎo)數(shù)求出函數(shù)的單調(diào)區(qū)間、最值,即可求出實(shí)數(shù)a的取值范圍.
解答 解:設(shè)公切線與f(x)=x2+1的圖象切于點(diǎn)(x1,x12+1),
與曲線C:g(x)=aex+1切于點(diǎn)(x2,aex2+1),
∴2x1=aex2=(aex2+1)−(x12+1)x2−x1=aex2−x12x2−x1,
化簡可得,2x1=2x1−x12x2−x1,得x1=0或2x2=x1+2,
∵2x1=aex2,且a>0,∴x1>0,則2x2=x1+2>2,即x2>1,
由2x1=aex2得a=2x1ex2=4(x2−1)ex2,
設(shè)h(x)=4(x−1)ex(x>1),則h′(x)=4(2−x)ex,
∴h(x)在(1,2)上遞增,在(2,+∞)上遞減,
∴h(x)max=h(2)=4e2,
∴實(shí)數(shù)a的取值范圍為(0,4e2],
故選:A.
點(diǎn)評 本題考查了導(dǎo)數(shù)的幾何意義、斜率公式,導(dǎo)數(shù)與函數(shù)的單調(diào)性、最值問題的應(yīng)用,及方程思想和構(gòu)造函數(shù)法,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {0,1,2} | B. | {(0,1),(1,2)} | C. | {x|x≥1} | D. | R |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)的最小值為e | B. | f(x)的最大值為e | C. | f(x)的最小值為1e | D. | f(x)的最大值為1e |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 第一象限 | B. | 第二象限 | C. | 第三象限 | D. | 第四象限 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|-1≤x≤1} | B. | {x|1≤x<2} | C. | {x|0<x≤1} | D. | {x|0<x<2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | -1 | B. | 1 | C. | 0 | D. | 2 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com