已知函數(shù)f(x)=-x2-2(a-1)x+3,求f(x)在[-1,1]上的最大值.
考點(diǎn):二次函數(shù)的性質(zhì)
專題:函數(shù)的性質(zhì)及應(yīng)用
分析:先求出函數(shù)的對稱軸,從而得出函數(shù)的單調(diào)區(qū)間,通過討論a的范圍,進(jìn)而求出函數(shù)的最大值.
解答: 解:∵函數(shù)f(x)的對稱軸x=1-a,
∴f(x)在(-∞,1-a)遞增,在(1-a,+∞)遞減,
當(dāng)-1≤1-a≤1,即0≤a≤2時,f(x)max=f(a-1)=a2-2a+4,
當(dāng)1-a<-1,即a>2時,f(x)max=f(-1)=2a,
當(dāng)1-a>1,即a<0時,f(x)max=f(1)=4-2a.
點(diǎn)評:本題考查了函數(shù)的單調(diào)性,函數(shù)的最值問題,考查二次函數(shù)的性質(zhì),是一道基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

將函數(shù)y=2cos(
π
3
x+
1
2
)的圖象作怎樣的變換可以得到y(tǒng)=cosx的圖象?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=-x2,g(x)=2x-m,若對任意x1∈[-1,3],總存在x2∈[0,2],使f(x1)≥g(x2)成立,則實(shí)數(shù)m的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)①y1=sinx+cosx,②y2=2
2
sinxcosx,則下列結(jié)論正確的是(  )
A、兩個函數(shù)的圖象均關(guān)于點(diǎn)(-
π
4
,0)成中心對稱
B、兩個函數(shù)的圖象均關(guān)于直線x=-
π
4
對稱
C、兩個函數(shù)在區(qū)間(-
π
4
,
π
4
)上都是單調(diào)遞增函數(shù)
D、函數(shù)y=y1-y2在區(qū)間(
π
4
,
π
2
)上有零點(diǎn)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解下列不等式.
(1)3x2-x-4>0;
(2)x2-x-12≤0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

試判斷f(x)=
x2+1
x
的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)f(x)=sin(ωπx-
π
4
)(ω>0)在區(qū)間(-1,0)上有且僅有一條平行于y軸的對稱軸,則ω的最大值是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列說法:
①函數(shù)f(x)=lnx+3x-6的零點(diǎn)只有1個且屬于區(qū)間(1,2);
②若關(guān)于x的不等式ax2+2ax+1>0恒成立,則a∈(0,1);
③函數(shù)y=x的圖象與函數(shù)y=sinx的圖象有3個不同的交點(diǎn);
④已知函數(shù)f(x)=log2
a-x
1+x
為奇函數(shù),則實(shí)數(shù)a的值為1.
正確的有
 
.(請將你認(rèn)為正確的說法的序號都寫上).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)f(x)=x|x-4|,x∈[0,m],其中m∈R且m>0,若函數(shù)f(x)的值域?yàn)閇0,4],則m的取值范圍為
 

查看答案和解析>>

同步練習(xí)冊答案