設(shè)A、B、C、D是半徑為1的球面上的四個(gè)不同點(diǎn),且滿(mǎn)足
AB
AC
=0,
AC
AD
=0,
AD
AB
=0,用S1、S2、S3分別表示△ABC、△ACD、△ABD的面積,則S1+S2+S3的最大值是(  )
A、
1
2
B、2
C、4
D、8
考點(diǎn):棱柱、棱錐、棱臺(tái)的體積,平面向量數(shù)量積的運(yùn)算
專(zhuān)題:綜合題,空間位置關(guān)系與距離
分析:由題意可知,三棱錐的頂點(diǎn)的三條直線(xiàn)AB,AC,AD兩兩垂直,可以擴(kuò)展為長(zhǎng)方體,對(duì)角線(xiàn)為球的直徑,設(shè)出三度,表示出面積關(guān)系式,然后利用基本不等式,求出最大值.
解答:解:設(shè)AB=a,AC=b,AD=c,
因?yàn)锳B,AC,AD兩兩互相垂直,擴(kuò)展為長(zhǎng)方體,它的對(duì)角線(xiàn)為球的直徑,所以a2+b2+c2=4R2=4
所以S△ABC+S△ACD+S△ADB=
1
2
(ab+ac+bc )≤
1
2
(a2+b2+c2)=2
即最大值為:2
故選:B.
點(diǎn)評(píng):本題是基礎(chǔ)題,考查球的內(nèi)接多面體,基本不等式求最值問(wèn)題,能夠把幾何體擴(kuò)展為長(zhǎng)方體,推知多面體的外接球是同一個(gè)球,是解題的關(guān)鍵.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知0<a<1,則函數(shù)f(x)=a|x|-|ogax|的零點(diǎn)的個(gè)數(shù)為( 。
A、1B、2C、3D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若x2+y2+(λ-1)x+2λy+λ=0表示圓,則λ的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某企業(yè)為節(jié)能減排,用9萬(wàn)元購(gòu)進(jìn)一臺(tái)新設(shè)備用于生產(chǎn).第一年需運(yùn)營(yíng)費(fèi)用2萬(wàn)元,從第二年起,每年運(yùn)營(yíng)費(fèi)用均比上一年增加2萬(wàn)元,該設(shè)備每年生產(chǎn)的收入均為11萬(wàn)元.設(shè)該設(shè)備使用了n(n∈N*)年后,盈利總額達(dá)到最大值(盈利額等于收入減去成本),則n等于( 。
A、4B、5C、6D、7

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,角A、B、C所對(duì)的邊長(zhǎng)分別為a,b,c且滿(mǎn)足csinA=
3
acosC,則sinA+sinB的最大值是( 。
A、1
B、
2
C、3
D、
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

一個(gè)幾何體的三視圖如圖所示,已知該幾何體是一個(gè)正方體的一部分,則該幾何體的體積是(  )
A、
1
2
B、
4
3
C、2
D、
2
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=2x+5,當(dāng)x從2變化到4時(shí),函數(shù)的平均變化率是(  )
A、2B、4C、-4D、-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

過(guò)兩點(diǎn)A(1,3)、B(-5,6)的直線(xiàn)的斜率是(  )
A、-2
B、-
1
2
C、3
D、-
1
3

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知直三棱柱ABC-A1B1C1的底面是邊長(zhǎng)為6的等邊三角形.若該三棱柱的五個(gè)面與球O1都相切,六個(gè)頂點(diǎn)都在球O2的球面上,則球O2的體積為( 。
A、4
3
π
B、32
3
π
C、
20
5
3
π
D、20
15
π

查看答案和解析>>

同步練習(xí)冊(cè)答案