5.設(shè)集合A={x|x2-16>0},B={x|-2<x≤6},則A∩B等于( 。
A.(-2,4)B.(4,6]C.(-4,6)D.(-4,-2)

分析 解不等式得集合A,根據(jù)交集的定義寫出A∩B.

解答 解:集合A={x|x2-16>0}={x|x<-4或x>4},
B={x|-2<x≤6},
則A∩B={x|4<x≤6}=(4,6].
故選:B.

點(diǎn)評 本題考查了集合的化簡與運(yùn)算問題,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.若對任意的 x,y∈(0,+∞),不等式ex+y-4+ex-y-4+6≥4xlna恒成立,則正實(shí)數(shù)a的最大值是( 。
A.$\sqrt{e}$B.$\frac{1}{2}e$C.eD.2e

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=x2+2(a-1)x+1在(-∞,-2)上是減函數(shù),則a的取值范圍是(-∞,3].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.如圖,在四棱錐P-ABCD中,底面ABCD為正方形,PA⊥底面ABCD,AD=AP=2,AB=2$\sqrt{7}$,E為棱PD中點(diǎn).
(1)求證:PD⊥平面ABE;
(2)求四棱錐P-ABCD外接球的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.函數(shù)f(x)=$\frac{{e}^{x}}{x}$的圖象大致為(  )
A.B.
C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.若cos($\frac{π}{8}$-α)=$\frac{1}{6}$,則cos($\frac{3π}{4}$+2α)的值為( 。
A.$\frac{17}{18}$B.-$\frac{17}{18}$C.$\frac{18}{19}$D.-$\frac{18}{19}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知向量$\overline{a}$,$\overline$滿足$\overrightarrow{a}$•$\overrightarrow$=8,|$\overrightarrow{a}$|=3,|$\overrightarrow$|=4,則|2$\overrightarrow{a}$-$\overrightarrow$|等于( 。
A.5B.$\sqrt{5}$C.2$\sqrt{5}$D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=xex-a(lnx+x).
(1)若函數(shù)f(x)恒有兩個零點(diǎn),求a的取值范圍;
(2)若對任意x>0,恒有不等式f(x)≥1成立.
①求實(shí)數(shù)a的值;
②證明:x2ex>(x+2)lnx+2sinx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.在某單位的職工食堂中,食堂每天以3元/個的價格從面包店購進(jìn)面包,然后以5元/個的價格出售.如果當(dāng)天賣不完,剩下的面包以1元/個的價格賣給飼料加工廠.根據(jù)以往統(tǒng)計資料,得到食堂每天面包需求量的頻率分布直方圖如下圖所示.食堂某天購進(jìn)了90個面包,以x(單位:個,60≤x≤110)表示面包的需求量,T(單位:元)表示利潤.
(Ⅰ)求T關(guān)于x的函數(shù)解析式;
(Ⅱ)根據(jù)直方圖估計利潤T不少于100元的概率;
(Ⅲ)在直方圖的需求量分組中,以各組的區(qū)間中點(diǎn)值代表該組的各個值,并以需求量落入該區(qū)間的頻率作為需求量取該區(qū)間中間值的概率(例如:若需求量x∈[60,70),則取x=65,且x=65的概率等于需求量落入[60,70)的頻率),求T的分布列和數(shù)學(xué)期望.

查看答案和解析>>

同步練習(xí)冊答案