1.已知函數(shù)$f(x)={e^x}-\frac{1}{2}{x^2}-mx$有極值點,則實數(shù)m的取值范圍是(  )
A.m≥1B.m>1C.0≤m≤1D.0<m<1

分析 求出函數(shù)的導數(shù),問題轉化為g(x)=ex和h(x)=x+m有2個不同的交點,求出臨界值即可.

解答 解:f′(x)=ex-x-m,
若函數(shù)f(x)有極值,
則f′(x)有零點,
即g(x)=ex和h(x)=x+m有2個不同的交點,
g(x)的切線與h(x)平行,設切點是(x0,${e}^{{x}_{0}}$),
則切線斜率是:k=${e}^{{x}_{0}}$=1,故x0=0,
故切線方程是:y=x+1,
g(x)=ex和h(x)=x+m有2個不同的交點,
則m>1,
故選:B.

點評 不同考查了函數(shù)的單調性、極值問題,考查導數(shù)的應用以及轉化思想,是一道中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

11.在0,1,2,3,…,9這十個自然數(shù)中,任取三個不同的數(shù)字.則組成的三位數(shù)中是3的倍數(shù)的有228個.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.如圖所示,在直三棱柱ABC-A1B1C1中,AB=AA1=2,∠ABC=90°,點E、F分別是棱AB、BB1的中點,當二面角C1-AA1-B為45o時,直線EF和BC1所成的角為(  )
A.45oB.60oC.90oD.120o

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

9.將4個不同的小球放入3個不同的盒子,其中有的盒子可能沒有放球,則總的方法共有(  )
A.81種B.64種C.36種D.18種

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.下列四個命題中錯誤的是( 。
A.在一次試卷分析中,從每個考室中抽取第5號考生的成績進行統(tǒng)計,不是簡單隨機抽樣
B.對一個樣本容量為100的數(shù)據(jù)分組,各組的頻數(shù)如下:
區(qū)間[17,19)[19,21)[21,23)[23,25)[25,27)[27,29)[29,31)[31,33]
頻數(shù)113318162830
估計小于29的數(shù)據(jù)大約占總體的58%
C.設產(chǎn)品產(chǎn)量與產(chǎn)品質量之間的線性相關系數(shù)為-0.91,這說明二者存在著高度相關
D.通過隨機詢問110名性別不同的行人,對過馬路是愿意走斑馬線還是愿意走人行天橋進行抽樣調查,得到如表列聯(lián)表:
總計
走天橋402060
走斑馬線203050
總計6050110
由${K^2}=\frac{{110×{{(40×30-20×20)}^2}}}{60×50×60×50}=7.8$,則有99%以上的把握認為“選擇過馬路方式與性別有關”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

6.已知函數(shù)$f(x)=\frac{1}{3}{x^3}-b{x^2}+2x+1,\;\;({x∈R})$.
(1)若$b=\frac{3}{2}$,求函數(shù)y=f(x)的單調區(qū)間;
(2)若x=-1是函數(shù)y=f(x)的一個極值點,試判斷此時函數(shù)y=f(x)的零點個數(shù),并說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

13.將函數(shù)$y=sin({2x+\frac{π}{6}})$的圖象向左平移$\frac{π}{6}$個單位,得到函數(shù)y=f(x)的圖象,則下列關于函數(shù)y=f(x)的說法正確的是( 。
A.奇函數(shù)B.周期是$\frac{π}{2}$
C.關于直線$x=\frac{π}{12}$對稱D.關于點$({-\frac{π}{4},0})$對稱

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

10.已知函數(shù)f(x)=$\frac{1}{2}$x4-2x3+3m(x∈R),若f(x)+6≥0恒成立,則實數(shù)m的取值范圍是( 。
A.m≥$\frac{5}{2}$B.m>$\frac{5}{2}$C.m≤$\frac{5}{2}$D.m<$\frac{5}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

11.已知拋物線y2=4x的焦點為F,點A、B在拋物線上,且∠AFB=90°,弦AB中點M在準線l上的射影為M1,則$\frac{{|{M{M_1}}|}}{{|{AB}|}}$的最大值為$\frac{{\sqrt{2}}}{2}$.

查看答案和解析>>

同步練習冊答案