設(shè)a>0,定點(diǎn)F(a,0),直線l:x=-a交x軸于點(diǎn)H,點(diǎn)B是l上的動點(diǎn),過點(diǎn)B垂直于l的直線與線段BF的垂直平分線交于點(diǎn)M.
(I)求點(diǎn)M的軌跡C的方程;
(II)設(shè)直線BF與曲線C交于P,Q兩點(diǎn),證明:向量、的夾角相等.
【答案】分析:(I)連接MF根據(jù)題意可推斷出|MF|=|MB|,進(jìn)而根據(jù)拋物線的定義推知C的方程.
(II)設(shè)P,Q的坐標(biāo)和直線BF的方程,與拋物線的方程聯(lián)立,利用韋達(dá)定理表示出x1x2,令的夾角為θ1的夾角為θ2,利用向量的數(shù)量積的運(yùn)算可分別求得cosθ1和cosθ2的表達(dá)式,結(jié)果相等,根據(jù)θ1和θ2的范圍,推斷出二者相等.
解答:(I)解:連接MF,依題意有|MF|=|MB|,
所以動點(diǎn)M的軌跡是以F(a,0)為焦點(diǎn),直線l:x=-a為準(zhǔn)線的拋物線,
所以C的方程為y2=4ax.(5分)
(II)解:設(shè)P,Q的坐標(biāo)分別為(x1,y1),(x2,y2),
依題意直線BF的斜率存在且不為0,設(shè)直線BF的方程為y=k(x-a)(k≠0),
將其與C的方程聯(lián)立,消去y得k2x2-2a(k2+2)x+a2k2=0
故x1x2=a2
記向量的夾角為θ1,的夾角為θ2,其中0<θ1,θ2<π,
因?yàn)?img src="http://thumb.zyjl.cn/pic6/res/gzsx/web/STSource/20131101221116976142498/SYS201311012211169761424018_DA/8.png">,
所以
同理
因?yàn)閏osθ1=cosθ2,且0<θ1,θ2<π,
所以θ12,即的夾角相等.
點(diǎn)評:本題主要考查了拋物線的定義,本題主要考查了直線與圓錐曲線的綜合問題,向量的數(shù)量積的運(yùn)算.考查了學(xué)生數(shù)形結(jié)合思想的運(yùn)用和分析問題的能力.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)a>0,定點(diǎn)F(a,0),直線l:x=-a交x軸于點(diǎn)H,點(diǎn)B是l上的動點(diǎn),過點(diǎn)B垂直于l的直線與線段BF的垂直平分線交于點(diǎn)M.
(I)求點(diǎn)M的軌跡C的方程;
(II)設(shè)直線BF與曲線C交于P,Q兩點(diǎn),證明:向量
HP
、
HQ
HF
的夾角相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:北京市西城區(qū)2007年高三數(shù)學(xué)(理)抽樣測試 題型:044

設(shè)a>0,定點(diǎn)F(a,0),直線:l∶x=-a交x軸于點(diǎn)A,點(diǎn)B是l上的動點(diǎn),過點(diǎn)B垂直于l的直線與線段BF的垂直平分線交于點(diǎn)M.

(1)

求點(diǎn)M的軌跡C的方程;

(2)

設(shè)直線BF與曲線C交于點(diǎn)P、Q兩點(diǎn),證明:向量的夾角相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

設(shè)a>0,定點(diǎn)F(a,0),直線l:x=-a交x軸于點(diǎn)H,點(diǎn)B是l上的動點(diǎn),過點(diǎn)B垂直于l的直線與線段BF的垂直平分線交于點(diǎn)M.
(I)求點(diǎn)M的軌跡C的方程;
(II)設(shè)直線BF與曲線C交于P,Q兩點(diǎn),證明:向量
HP
、
HQ
HF
的夾角相等.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:2006-2007學(xué)年北京市西城區(qū)高三(上)期末數(shù)學(xué)試卷(文科)(解析版) 題型:解答題

設(shè)a>0,定點(diǎn)F(a,0),直線l:x=-a交x軸于點(diǎn)H,點(diǎn)B是l上的動點(diǎn),過點(diǎn)B垂直于l的直線與線段BF的垂直平分線交于點(diǎn)M.
(I)求點(diǎn)M的軌跡C的方程;
(II)設(shè)直線BF與曲線C交于P,Q兩點(diǎn),證明:向量的夾角相等.

查看答案和解析>>

同步練習(xí)冊答案