已知函數(shù)f(x)=|x-3|+1,g(x)=kx,若函數(shù)F(x)=f(x)-g(x)有兩個零點,求k的取值范圍.
考點:函數(shù)零點的判定定理
專題:計算題,作圖題,函數(shù)的性質(zhì)及應(yīng)用
分析:函數(shù)F(x)=f(x)-g(x)有兩個零點可化為f(x)=|x-3|+1與g(x)=kx有兩個不同的交點,作函數(shù)的圖象求解.
解答: 解:函數(shù)F(x)=f(x)-g(x)有兩個零點可化為f(x)=|x-3|+1與g(x)=kx有兩個不同的交點,
作函數(shù)f(x)=|x-3|+1與g(x)=kx的圖象如下,

故直線l2的斜率k=
1
3
;直線l1的斜率k=1;
故k的取值范圍為(
1
3
,1).
點評:本題考查了函數(shù)的圖象的作法與函數(shù)的零點與函數(shù)的圖象的應(yīng)用,屬于基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

已知集合A={x|2<2x<8},B={x|a≤x≤a+3}.
(Ⅰ)當(dāng)a=2時,求A∩B;
(Ⅱ)若B⊆∁RA,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖的平行六面體ABCD-A1B1C1D1中,點M在BB1上,點N在DD1上,且BM=
1
2
BB1,D1N=
1
3
D1D,若
MN
=x
AB
+y
AD
+z
AA1
,則x+y+z=(  )
A、
1
7
B、
1
6
C、
2
3
D、
3
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

若定義運算a*b=
a(a<b)
b(a≥b)
,f(x)=sinx*cosx,則此函數(shù)的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知,如圖所示的△DAB是正三角形,與等腰三角形ABC的公共邊AB=2
3
,且△ABC中,∠ACB=120°
(Ⅰ)當(dāng)平面ABD⊥平面ABC時,求CD的長;
(Ⅱ)如果△ABC繞邊AB轉(zhuǎn)動,請你首先描述一下你對直線AB與CD的位置關(guān)系的直觀感知,然后運用所學(xué)知識證明你的直觀感知.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知偶函數(shù)y=f(x)(x∈R)在區(qū)間[-1,0]上單調(diào)遞增,且滿足f(1-x)+f(1+x)=0,給出下列判斷:
(1)f(5)=0;
(2)f(x)在[1,2]上是減函數(shù);
(3)函數(shù)y=f(x)沒有最小值;
(4)函數(shù)f(x)在x=0處取得最大值;
(5)f(x)的圖象關(guān)于直線x=1對稱.
其中正確的序號是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知直線l:y=ax+1-a(a∈R),曲線C:y=x2.問是否存在實數(shù)a,使得曲線C與直線l有兩個不同的交點,且以這兩個交點為端點的線段長度恰好等于|a|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知單調(diào)遞增的等差數(shù)列{an}滿足a1=2,且a1,a2,a4成等比數(shù)列,其前n項和為Sn
(Ⅰ)求數(shù)列{an}的通項公式及Sn
(Ⅱ)設(shè)bn=
Sn
n
,求數(shù)列{
1
bnbn+1
}的前n項和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知
cos2α
cosα[1+tan(-α)]
=
2
3
,則sin2α+cos(α-
π
4
)等于(  )
A、-
4
9
B、
4
9
C、
3
4
D、-
3
4

查看答案和解析>>

同步練習(xí)冊答案