1.函數(shù)f(x)=x+$\frac{4}{x-3}$,x∈(3,+∞)的最小值為( 。
A.3B.4C.6D.7

分析 求出x-3的范圍,根據(jù)基本不等式的性質(zhì)求出f(x)的最小值即可.

解答 解:∵x>3,∴x-3>0,
∴f(x)=x+$\frac{4}{x-3}$=(x-3)+$\frac{4}{x-3}$+3≥2$\sqrt{(x-3)•\frac{4}{x-3}}$+3=7,
當(dāng)且僅當(dāng)x-3=$\frac{4}{x-3}$即x=5時”=“成立,
故f(x)的最小值是7,
故選:D.

點評 本題考查了基本不等式的性質(zhì),注意應(yīng)用不等式需滿足的條件.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.下面的偽代碼輸出的結(jié)果S為( 。
I←1
While I<8
I←I+2
S←2I+3
End while
Print S.
A.17B.19C.21D.23

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知三角形ABC內(nèi)的一點D滿足$\overrightarrow{DA}$•$\overrightarrow{DB}$=$\overrightarrow{DB}$•$\overrightarrow{DC$=$\overrightarrow{DC}$•$\overrightarrow{DA}$=-2,且|$\overrightarrow{DA}$|=|$\overrightarrow{DB}$|=|$\overrightarrow{DC}$|.平面ABC內(nèi)的動點P,M滿足|$\overrightarrow{AP}$|=1,$\overrightarrow{PM}$=$\overrightarrow{MC}$,則|$\overrightarrow{BM}$|2的最大值是( 。
A.$\frac{49}{4}$B.$\frac{43}{4}$C.$\frac{{37+6\sqrt{3}}}{4}$D.$\frac{{37+2\sqrt{33}}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.設(shè)函數(shù)f(x)=-4x+2x+1-1,g(x)=lg(ax2-4x+1),若對任意x1∈R,都存在x2∈R,使f(x1)=g(x2),則實數(shù)a的取值范圍為( 。
A.(0,4]B.(-∞,4]C.(-4,0]D.[4,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.寫出橢圓4x2+y2=16的長軸長、短軸長、離心率、焦點坐標(biāo)、頂點坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.在△ABC中,a,b,c分別為內(nèi)角A,B,C的對邊,5a2-5c2=5b2-8bc,邊b,c是關(guān)于x的方程:x2-(12tanA)x+25cosA=0的兩個根(b<c),D為△ABC內(nèi)任一點,點D到三邊的距離和為d.
(1)求邊a,b,c;
(2)求d的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.某市旅游節(jié)需在A大學(xué)和B大學(xué)中分別招募8名和12名志愿者,這20名志愿者的身高(單位:cm)繪制出如圖所示的莖葉圖.若身高在175cm以上(包括175cm)定義為“高個子”,身高在175cm以下(不包括175cm)定義為“非高個子”,且只有B大學(xué)的“高個子”才能擔(dān)任“兼職導(dǎo)游”.
(1)用分層抽樣的方法從“高個子”和“非高個子”中共抽取5人,現(xiàn)從這5人中選2人,那么至少有1人是“高個子”的概率是多少?
(2)若從所有“高個子”中選3名志愿者,用ξ表示所選志愿者中能擔(dān)任“兼職導(dǎo)游”的人數(shù),試寫出隨機變量ξ的分布列及數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.執(zhí)行如圖所示的程序框圖,若輸出的S=183,則判斷框內(nèi)應(yīng)填入的條件是( 。
A.k>7?B.k>6?C.k>5?D.k>4?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.在數(shù)列{an}中,a1=1,an+1=$\frac{{a}_{n}}{c•{a}_{n}+1}$ (c為常數(shù),n∈N*)且a5=a22
(1)求證:數(shù)列{$\frac{1}{{a}_{n}}$}是等差數(shù)列;
(2)求c的值;
(3)若a1,a2,a5彼此不相等,數(shù)列{an•bn}是首項為1,公比為$\frac{1}{2}$的等比數(shù)列,求:數(shù)列{bn}的前n項和為Sn

查看答案和解析>>

同步練習(xí)冊答案