設(shè)A={x∈R|-1<x<3},B={x∈R|x>a},若A?B,求a的取值范圍.
考點(diǎn):集合的包含關(guān)系判斷及應(yīng)用
專題:集合
分析:因?yàn)锳?B,且B={x∈R|x>a},得a≥1,從而得到求解.
解答: 解:∵A?B,
∵A={x∈R|-1<x<3},B={x∈R|x>a},
∴a≤-1,
∴a的取值范圍為(-∞,1].
點(diǎn)評(píng):本題重點(diǎn)考查集合之間的包含關(guān)系,屬于基礎(chǔ)題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)f(x)=sin(ωx+
π
6
)(ω>0)的最小正周期為π,則ω的值為( 。
A、
1
2
B、1
C、2
D、4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù) f(x)=
4x+k•2x+1
4x+2x+1
.若對(duì)任意的實(shí)數(shù)x1,x2,x3,不等式f(x1)+f(x2)>f(x3)恒成立,則實(shí)數(shù)k的取值范圍是( 。
A、0<k≤3
B、1≤k≤4
C、-
1
2
≤k≤3
D、-
1
2
≤k≤4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知點(diǎn)A(1,a),圓:x2+y2=4.
(1)若過點(diǎn)A的圓的切線只有一條,求a的值及切線方程;
(2)若過點(diǎn)A且在兩坐標(biāo)軸上截距相等的直線與圓相切,求a的值及切線方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

橢圓
x2
169
+
y2
144
=1上是否存在一點(diǎn)P到右焦點(diǎn)的距離為5,為什么?

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

設(shè)集合P={x|x2-x-6<0},Q={2a≤x≤a+3}.
(1)若P∪Q=P,求實(shí)數(shù)a的取值范圍;
(2)若P∩Q=∅,求實(shí)數(shù)a的取值范圍;
(3)若P∩Q={x|0≤x<3},求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

證明題:(
C
0
n
2+(C
 
1
n
2+…+(C
 
n
n
2=
2n!
n!n!

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知f(x)=x|x-a|+b,x∈R.
(Ⅰ)當(dāng)a=1,b=0時(shí),判斷f(x)的奇偶性,并說明理由;
(Ⅱ)當(dāng)a=1,b=1時(shí),若f(2x)=
5
4
,求x的值;
(Ⅲ)若b<-1,且對(duì)任何x∈[0,1]不等式f(x)<0恒成立,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下列命題中,正確的是
 

(1)若
a
b
是共線向量,
b
c
是共線向量,則
a
c
是共線向量;
(2)已知
a
=(sinθ,
1+cosθ
,
b
=(1,
1-cosθ
),其中θ∈(π,
2
),則
a
b
;
(3)函數(shù)f(x)=tan
x
2
與函數(shù)f(x)=
1-cosx
sinx
是同一函數(shù);
(4)tan70°•cos10•(1-
3
tan20°)=1.

查看答案和解析>>

同步練習(xí)冊(cè)答案