在如圖的各圖中,每個圖的兩個變量具有線性相關關系的圖是( 。
A、①②B、①③C、②④D、②③
考點:散點圖
專題:計算題,概率與統(tǒng)計
分析:由圖可知,:①是函數(shù)關系,故排除A,B;④不具有相關性,故排除C,從而解得.
解答: 解:①是函數(shù)關系,故排除A,B;
④不具有相關性,故排除C,
故選D.
點評:本題考查了線性相關關系的判斷,屬于基礎題.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

如圖的程序運行之后輸出值為16,那么輸入的值x應該是(  )
A、3或-3B、-5
C、5或-3D、5或-5

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

在直角坐標系xOy中,一次函數(shù)y=kx+b+2(k≠0)的圖象與x軸的正半軸、y軸的正半軸分別交于點A、B.
(1)用b和k表示△AOB的面積S△AOB;
(2)若△AOB的面積S△AOB=|OA|+|OB|+3.
①用b表示k,并確定b的取值范圍;
②求△AOB面積的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

觀察以下不等式:1>
1
2
;1+
1
2
+
1
3
>1;1+
1
2
+
1
3
…+
1
7
3
2
;1+
1
2
+
1
3
+…+
1
15
>2;1+
1
2
+
1
3
+…+
1
31
5
2
;由此推測第n個不等式為( 。
A、1+
1
2
+
1
3
+…+
1
2n
n
2
B、1+
1
2
+
1
3
+…+
1
2n-1
n-1
2
C、1+
1
2
+
1
3
+…+
1
2n-1
n
2
D、1+
1
2
+
1
3
+…+
1
2n-1
n
2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知橢圓
x2
a2
+
y2
b2
=1(a>b>0)的離心率為
5
3
,設其左、右焦點分別為F1,F(xiàn)2,上頂點為B1,△B1F1F2的面積為2
5

(Ⅰ)求橢圓的方程;
(Ⅱ)過點(2,0)作直線l與橢圓交于A,B兩點,O是坐標原點,設
OS
=
OA
+
OB
,是否存在這樣的直線l,使四邊形OASB的對角線相等(即|
OS
|=|
AB
|)?若存在,求出直線l的方程,若不存在,試說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

已知點M與兩個定點(1,0),(-2,0)的距離的比為
1
2
,則點M的軌跡所包含的圖形面積等于( 。
A、9πB、8πC、4πD、π

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

函數(shù)在f(x)=sinx-ax∈[
π
3
,π]上有2個零點,則實數(shù)a的取值范圍(  )
A、[
3
2
,1)
B、[0,
3
2
C、(
3
2
,1)
D、(
2
2
,1)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

定義在(-1,1)上的函數(shù)f(x)-f(y)=f(
x-y
1-xy
),當x∈(-1,0)時,f(x)>0,若P=f(
1
3
)+f(
1
17
),Q=f(
1
5
),R=f(-
1
3
),則P,Q,R的大小關系為       ( 。
A、R>Q>P
B、R>P>Q
C、P>R>Q
D、Q>P>R

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

平面內(nèi)給定三個向量
a
=(3,2),
b
=(-1,2),
c
=(4,1)
(1)求滿足
a
=m
b
+n
c
的實數(shù)m,n;
(2)若(
a
+k
c
)∥(2
b
-
a
),求實數(shù)k;
(3)若
d
滿足(
d
-
c
)∥(
a
+
b
),且|
d
-
c
|=
5
,求
d

查看答案和解析>>

同步練習冊答案