動(dòng)點(diǎn)P為橢圓
x2
25
+
y2
16
=1
上任意一點(diǎn),左右焦點(diǎn)分別是F1,F(xiàn)2,直線l為∠F1PF2的外角平分線,過F1作直線l的垂線,垂足為Q,則點(diǎn)Q的軌跡方程是( 。
A.x2+y2=25B.x2+y2=16C.x2-y2=25D.x22y2=16
由題意,P是以F1,F(xiàn)2為焦點(diǎn)的橢圓
x2
25
+
y2
16
=1
上一點(diǎn),
過焦點(diǎn)F2作∠F1PF2外角平分線的垂線,垂足為Q,
延長F2Q交F1P延長線于M,得PM=PF2,
由橢圓的定義知PF1+PF2=2a,
∴PF1+PM=MF1=2a,
連接OM,知OQ是三角形F1F2Q的中位線
∴OQ=a,即點(diǎn)Q到原點(diǎn)的距離是定值a,
由此知點(diǎn)Q的軌跡是以原點(diǎn)為圓心,以a為半徑的圓,
∴點(diǎn)Q的軌跡方程是x2+y2=25.
故選:A.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

設(shè)橢圓
x2
6
+
y2
2
=1和雙曲線
x2
2
-
y2
2
=1的公共焦點(diǎn)為F1,F(xiàn)2,P是兩曲線的一個(gè)交點(diǎn),則∠F1PF2=______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

橢圓
x2
4
+y2=1
的左、右焦點(diǎn)分別為F1,F(xiàn)2,點(diǎn)P在橢圓上,若P,F(xiàn)1,F(xiàn)2是一個(gè)直角三角形的三個(gè)頂點(diǎn),則點(diǎn)P到x軸的距離為(  )
A.
1
2
B.
3
3
C.
1
2
3
3
D.以上均不對(duì)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

以橢圓上任意一點(diǎn)與焦點(diǎn)所連接的線段為直徑的圓與以長軸為直徑的圓的位置關(guān)系是( 。
A.相離B.相交C.內(nèi)切D.無法確定

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

橢圓
x2
4
+
y2
m
=1
的離心率e∈[
2
2
,1)
,則m的取值范圍為______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:解答題

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)
的離心率為
3
3
,過右焦點(diǎn)F的直線l與C相交于A、B兩點(diǎn),當(dāng)l的斜率為1時(shí),坐標(biāo)原點(diǎn)O到l的距離為
2
2
,
(Ⅰ)求a,b的值;
(Ⅱ)C上是否存在點(diǎn)P,使得當(dāng)l繞F轉(zhuǎn)到某一位置時(shí),有
OP
=
OA
+
OB
成立?若存在,求出所有的P的坐標(biāo)與l的方程;若不存在,說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓
x2
16
+
y2
12
=1
上一點(diǎn)P到焦點(diǎn)F1的距離等于3,那么點(diǎn)P到另一焦點(diǎn)F2的距離等于______.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:單選題

若直線y=
3
2
x
與橢圓
x2
a2
+
y2
b2
=1(a>b>0)
的交點(diǎn)在長軸上的射影恰好為橢圓的焦點(diǎn),則橢圓的離心率是(  )
A.
2
2
B.2C.
2
-1
D.
1
2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源:不詳 題型:填空題

已知橢圓的中心在原點(diǎn),一個(gè)焦點(diǎn)與拋物線y2=8x的焦點(diǎn)重合,一個(gè)頂點(diǎn)的坐標(biāo)為
0,2
,則此橢圓方程為______.

查看答案和解析>>

同步練習(xí)冊(cè)答案