4.已知f(x)=3$\sqrt{2}$cos(x+φ)+sinx,x∈R,φ∈(-$\frac{π}{2}$,$\frac{π}{2}}$)的圖象過(${\frac{π}{2}$,4)點(diǎn),則f(x)在區(qū)間[0,$\frac{π}{2}}$]上的值域?yàn)椋ā 。?table class="qanwser">A.[-5,5]B.[3,5]C.[3,4]D.[2,5]

分析 根據(jù)題意$f({\frac{π}{2}})=4$,由此求出φ的值,化簡f(x)為正弦型函數(shù),利用正弦函數(shù)的圖象與性質(zhì),即可求出f(x)在區(qū)間[0,$\frac{π}{2}}$]上的值域.

解答 解:根據(jù)題意,$f({\frac{π}{2}})=4$,
則$3\sqrt{2}cos({\frac{π}{2}+φ})+sin\frac{π}{2}=4$,
解得$sinφ=-\frac{{\sqrt{2}}}{2}$,
又$φ∈({-\frac{π}{2},\frac{π}{2}})$,
所以φ=-$\frac{π}{4}$,
所以f(x)=3$\sqrt{2}$cos(x-$\frac{π}{4}$)+sinx=3cosx+4sinx=5sin(x+θ),
其中$sinθ=\frac{3}{5},cosθ=\frac{4}{5}$;
故$\frac{π}{6}<θ<\frac{π}{4}$,
由$x∈[{0,\frac{π}{2}}]$知,$0≤x+θ≤\frac{π}{2}+θ$,
故3=5sinθ≤5sin(x+θ)≤5,
即f(x)的值域?yàn)閇3,5].
故選:B.

點(diǎn)評(píng) 本題考查了三角函數(shù)的圖象與性質(zhì)的應(yīng)用問題,也考查轉(zhuǎn)化與計(jì)算能力的應(yīng)用問題,是基礎(chǔ)題目.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.為了調(diào)查某中學(xué)學(xué)生在周日上網(wǎng)的時(shí)間,隨機(jī)對(duì)100名男生和100名女生進(jìn)行了不記名的問卷調(diào)查,得到了如下統(tǒng)計(jì)結(jié)果:
表1:男生上網(wǎng)時(shí)間與頻數(shù)分布表
 上網(wǎng)時(shí)間(分鐘)[30,40)[40,50)[50,60)[60,70)[70,80]
 人數(shù) 525  3025  15
表2:女生上網(wǎng)時(shí)間與頻數(shù)分布表
 上網(wǎng)時(shí)間(分鐘)[30,40)[40,50)[50,60)[60,70)[70,80]
 人數(shù)10  2040  2010 
(1)若該中學(xué)共有女生600人,試估計(jì)其中上網(wǎng)時(shí)間不少于60分鐘的人數(shù);
(2)完成表3的2×2列聯(lián)表,并回答能否有90%的把握認(rèn)為“學(xué)生周日上午時(shí)間與性別有關(guān)”;
(3)從表3的男生中“上網(wǎng)時(shí)間少于60分鐘”和“上網(wǎng)時(shí)間不少于60分鐘”的人數(shù)中用分層抽樣的方法抽取一個(gè)容量為10的樣本,再從中任取2人,記被抽取的2人中上午時(shí)間少于60分鐘的人數(shù)記為X,求X的分布列和數(shù)學(xué)期望.
表3
 上網(wǎng)時(shí)間少于60分鐘  上網(wǎng)時(shí)間不少于60分鐘合計(jì) 
 男生   
 女生   
 合計(jì)   
附:k2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
 P(k2≥k0 0.50 0.400.25  0.150.10 0.05  0.0250.010  0.0050.001 
k0  0.4550.708  1.3232.072  2.076 3.845.024  6.6357.879  10.828

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=|x-1|+|x-2|.
(Ⅰ)求不等式f(x)≤4的解集;
(Ⅱ)使f(x)≥m恒成立的實(shí)數(shù)m的最大值為t,若a、b均為正實(shí)數(shù),且滿足a+b=2t.求a2+b2的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.給出如下四個(gè)命題:
①若“p∨q”為真命題,則p,q均為真命題;
②“若a>b,則2a>2b-1”的否命題為“若a≤b,則2a≤2b-1”;
③“?x∈R,x2+x≥1”的否定是“?x0∈R,x${\;}_{0}^{2}$+x0≤1”;
④“x>1”是“x>0”的充分不必要條件.
其中不正確的命題是( 。
A.①②B.②③C.①③D.③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=lnx-ax+a,a∈R.
(1)求函數(shù)f(x)的單調(diào)增區(qū)間;
(2)若函數(shù)f(x)在區(qū)間(1,e]上無零點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.設(shè)函數(shù)f(x)=|2x+1|-|x-3|.
(1)解不等式f(x)>0;
(2)若f(x)+3|x-3|≥t對(duì)一切實(shí)數(shù)x均成立,求實(shí)數(shù)t的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.函數(shù)f(x)=a-$\frac{2}{{2}^{x}+1}$為奇函數(shù)的必要條件是a=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.如圖,四棱錐P-ABCD的底面ABCD是矩形,PA⊥底面ABCD,E、F分別是PC、PD的中點(diǎn),PA=$\sqrt{3}$AD.
(1)在線段BC上求作一點(diǎn)G,使得平面EFG∥平面PAB;
(2)在(1)的條件下,求平面EFG與平面PCD所成的二面角的大。

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.如圖,三棱柱ABC-A1B1C1的各條棱長均相等,且側(cè)棱垂直于底面,則BC1與平面A1B1C1所成的角為45°.

查看答案和解析>>

同步練習(xí)冊(cè)答案