A. | 充要條件 | B. | 充分不必要條件 | ||
C. | 必要不充分條件 | D. | 不充分也不必要條件 |
分析 關(guān)于x的方程ax2+2x+1=0至少有一個負(fù)實根,考慮一次或二次線兩種情況,對這兩種情況分別討論,解不等式可得a的范圍剛好是小于或等于1,應(yīng)該是充要條件.
解答 解:對于p:關(guān)于x的方程ax2+2x+1=0至少有一個負(fù)實根,可分如下兩種情況:
(1)當(dāng)a=0時,方程是一個直線,可知有一個負(fù)實根
(2)當(dāng)a≠0,當(dāng)關(guān)于x的方程ax2+2x+1=0有實根,△≥0,解可得a≤1;
①當(dāng)關(guān)于x的方程ax2+2x+1=0有一個負(fù)實根,有$\frac{1}{a}$<0,解可得a<0;
②當(dāng)關(guān)于x的方程ax2+2x+1=0有二個負(fù)實根,有 $\left\{\begin{array}{l}{\frac{1}{a}>0}\\{-\frac{2}{a}<0}\end{array}\right.$,解可得a>0;,
即有a≠0且a≤1
綜上可得,a≤1;
q與p的范圍完全相同,
故¬p是¬q的充要條件,
故選:A.
點評 本題考查學(xué)生對一元二次方程的根的分布與系數(shù)的關(guān)系以及充分必要條件的判斷,屬于基礎(chǔ)題.做題時應(yīng)該注意對字母系數(shù)的討論,避免當(dāng)成二次直接用根的判別式而至錯.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (3,+∞) | B. | $({\root{3}{3},+∞})$ | C. | $({\root{3}{3},3})$ | D. | $({0,\root{3}{3}})∪({3,+∞})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {2} | B. | {-3} | C. | {-3,2} | D. | {-2,3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 銳角 | B. | 直角 | C. | 等腰 | D. | 等腰或直角 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 5 | B. | 6 | C. | 7 | D. | 8 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)=x2+2x,x∈(-1,+∞) | B. | f(x)=x2-1,x∈(-1,+∞) | ||
C. | f(x)=x2+2x,x∈(-∞,-1) | D. | f(x)=x2-1,x∈(-∞,-1) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 直角三角形 | B. | 等腰三角形 | C. | 等腰直角三角形 | D. | 等邊三角形 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com