(本題滿分12分)
某港口要將一件重要物品用小艇送到一艘正在航行的輪船上,在小艇出發(fā)時(shí),輪船位于港口北偏西且與該港口相距海里的處,并正以海里/小時(shí)的航行速度沿正東方向勻速行駛。假設(shè)該小艇沿直線方向以海里/小時(shí)的航行速度勻速行駛,經(jīng)過(guò)小時(shí)與輪船相遇。
(1)若希望相遇時(shí)小艇的航行距離最小,則小艇航行速度的大小應(yīng)為多少?XK]
(2)為保證小艇在分鐘內(nèi)(含分鐘)能與輪船相遇,試確定小艇航行速度的最小值;[來(lái)(
(3)是否存在,使得小艇以海里/小時(shí)的航行速度行駛,總能有兩種不同的航行方向與輪船相遇?若存在,試確定的取值范圍;若不存在,請(qǐng)說(shuō)明理由。
解法一:(I)設(shè)相遇時(shí)小艇的航行距離為S海里,則
故時(shí),,
即,小艇以海里/小時(shí)的速度航行,相遇時(shí)小艇的航行距離最小
(Ⅱ)設(shè)小艇與輪船在B處相遇,
由題意可知,
化簡(jiǎn)得:
由于0<t≤1/2,即1/t ≥2,
所以當(dāng)=2時(shí),
取得最小值,
即小艇航行速度的最小值為海里/小時(shí)。
(Ⅲ)由(Ⅱ)知,設(shè),
于是。(*)
小艇總能有兩種不同的航行方向與輪船相遇,等價(jià)于方程(*)應(yīng)有兩個(gè)不等正根,即:
解得。
所以的取值范圍是。
解法二:
(Ⅰ)若相遇時(shí)小艇的航行距離最小,又輪船沿正東方向勻速行駛,則小艇航行方向?yàn)檎狈较颉TO(shè)小艇與輪船在C處相遇。
在中,,
。
又,
此時(shí),輪船航行時(shí)間,。
即,小艇以海里/小時(shí)的速度行駛,相遇時(shí)小艇的航行距離最小。
(Ⅱ)(Ⅲ)同解法一
【解析】略
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
π | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
(本題滿分12分)已知數(shù)列是首項(xiàng)為,公比的等比數(shù)列,,
設(shè),數(shù)列.
(1)求數(shù)列的通項(xiàng)公式;(2)求數(shù)列的前n項(xiàng)和Sn.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年上海市金山區(qū)高三上學(xué)期期末考試數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分,第1小題6分,第2小題6分)
已知集合A={x| | x–a | < 2,xÎR },B={x|<1,xÎR }.
(1) 求A、B;
(2) 若,求實(shí)數(shù)a的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2012-2013學(xué)年安徽省高三10月月考理科數(shù)學(xué)試卷(解析版) 題型:解答題
(本題滿分12分)
設(shè)函數(shù)(,為常數(shù)),且方程有兩個(gè)實(shí)根為.
(1)求的解析式;
(2)證明:曲線的圖像是一個(gè)中心對(duì)稱圖形,并求其對(duì)稱中心.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源:2011-2012學(xué)年重慶市高三第二次月考文科數(shù)學(xué) 題型:解答題
(本題滿分12分,(Ⅰ)小問(wèn)4分,(Ⅱ)小問(wèn)6分,(Ⅲ)小問(wèn)2分.)
如圖所示,直二面角中,四邊形是邊長(zhǎng)為的正方形,,為上的點(diǎn),且⊥平面
(Ⅰ)求證:⊥平面
(Ⅱ)求二面角的大小;
(Ⅲ)求點(diǎn)到平面的距離.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com