設tanα、tanβ是方程x3+3
3
x+4=0
的兩根,且a∈(-
π
2
π
2
)
,β∈(-
π
2
,
π
2
)
,
則α+β的值為:( 。
A、-
3
B、
π
3
C、
π
3
或-
3
D、-
π
3
3
分析:先求出tanα+tanβ、tanαtanβ的值確定tanα、tanβ的符號,進而可以縮小α和β的范圍,再根據(jù)兩角和的正切公式和求出tan(α+β)的值得到答案.
解答:解:∵tanα、tanβ是方程x3+3
3
x+4=0
的兩根
∴tanα+tanβ=-3
3
,tanαtanβ=4
∴tanα<0、tanβ<0∵a∈(-
π
2
,
π
2
)
,β∈(-
π
2
,
π
2
)

∴α∈(-
π
2
,0),β∈(-
π
2
,0)∴α+β∈(-π,0)
∵tan(α+β)=
tanα+tanβ
1-tanαtanβ
=
-3
3
1-4
=
3

∴α+β=-
3

故選A.
點評:本題主要考查正切函數(shù)的兩角和的公式.屬基礎題.但要注意角的范圍.
練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:

設tanα、tanβ是關于x的方程mx2-2x
7m-3
+2m=0
的兩個實根,求函數(shù)f(m)=tan(α+β)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

設tanθ和tan(
π
4
-θ)是方程x2+px+q=0的兩個根,則p、q之間的關系是( 。
A、p+q+1=0
B、p-q+1=0
C、p+q-1=0
D、p-q-1=0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

(2012•重慶)設tanα,tanβ是方程x2-3x+2=0的兩個根,則tan(α+β)的值為( 。

查看答案和解析>>

科目:高中數(shù)學 來源:成功之路·突破重點線·數(shù)學(學生用書) 題型:013

設tanα和tanβ是關于x的一元二次方程mx2+(2m-3)x+(m-2)=0的兩根,則tan(α+β)的最小值是

[  ]

A.
B.
C.-
D.不存在

查看答案和解析>>

同步練習冊答案